B.Tech. ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2013
BIEEE-002 : DIGITAL CONTROL SYSTEM
Time : 3 Hours
Maximum Marks : 70

Note: (1) Attempt any seven questions.
(2) Each question carry equal marks.

1. Draw the block diagram of Digital control system $\mathbf{1 0}$ and explain functions of each block.
2. Discuss about process of sampling in brief and define the following terms :
(a) Sample and hold (S / H)
(b) Quantization of continuous signal.
3. Obtain Z-transform of cosine function
$x(\mathrm{t})=\left\{\begin{array}{cc}\cos \mathrm{wt} & 0 \leq \mathrm{t} \\ 0 & \mathrm{t}<0\end{array}\right.$
4. Determine the initial value $x(0)$ of the Z -transform $\mathbf{1 0}$ of $x(\mathrm{t})$ is given by

$$
x(z)=\frac{\left(1-\mathrm{e}^{-\mathrm{T}}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-\mathrm{e}^{-\mathrm{T}} z^{-1}\right)}
$$

5. Obtain the block diagram for the following pulse-Transfer function system by :
(a) Standard programming
(b) Ladder programming
6. Consider the system described by 10
$y(\mathrm{k})-0.6 y \quad(\mathrm{k}-1)-0.81 \quad y(\mathrm{k}-2)+0.67$ $y(\mathrm{k}-3)-0.12 y(\mathrm{k}-4)=x(\mathrm{k})$
where $x(\mathrm{k})$ is the input and $y(\mathrm{k})$ is output of the system. Determine the stability of the system by using "pulse-Transfer function".
7. Consider the following characteristics equation : $p(z)=z^{3}-1.3 z^{2}-0.08 z+0.24=0$
Determine whether or not any of the roots of the characteristic equation lie outside the unit circle in the z-plane. Using the bilinear-Transformation.
8. Consider the following system.

$$
\frac{y(z)}{u(z)}=\frac{z+1}{z^{2}+1.3 z+0.4}
$$

Show the state-space representation in the following form :
(a) Controllable canonical form
(b) Observable - canonical form
9. Determine the stability of the equilibrium state of $\mathbf{1 0}$ the following system.
$x^{0}{ }_{1}=-x_{1}-2 x_{2}$
$x_{2}^{0}=x_{1}-4 x_{2}$
Explain the "Liapunov stability Analysis of liner Time - Invariant continuous-time system.
10. Construct the Jury stability table for the following 10 characteristic equation :
$p(z)=a_{0} z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}$
where $a_{0}>0$, write the stability conditions.

