No. of Printed Pages: 4

BIEE-033

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination

December, 2013

BIEE-033 : ELECTRICAL CIRCUIT THEORY

Time : 2 hours

00301

Maximum Marks : 70

Note : Attempt any five questions. All questions can carry equal marks. Use of scientific calculator is permitted.

Fig. 1

1

2. (a) Twelve identical wires of resistance(r) 6Ω each are arranged to form edges of a cube as shown in fig. 2. A current of 40 m A is fed into the cube at one corner and out on the other corner. Calculate the potential difference developed between these corners and the net resistance of the network.

7

7

(b) In the network shown in fig.3, use source transformation to determine the current through and voltage across the 5Ω resistor.

Fig. 3

BIEE-033

- **3.** (a) State and prove maximum power transfer **7** theorem.
 - (b) Determine the current I_L through the 15 Ω 7 resistor in the network in the given fig 4. by Norton's theorem.

Fig.4

- **4.** (a) Write and explain KCL and KVL with **7** suitable examples.
 - (b) Define form factor and peak factor and 7 explain their significance.

5. (a) Four voltages are represented by 7 $v_1 = 100 \sin 314 t$ $v_2 = 250 \cos 314 t$

$$v_3 = 150 \sin (314 t + \frac{\pi}{6})$$

$$V_4 = 200 \sin(314 t - \frac{\pi}{4})$$

Calculate the resultant voltage and express it in the form of v=V_m sin (314 t $\pm \phi$).

- (b) A 100V, 80W lamp is to be operated on a 240 V, 50 Hz supply. Calculate the value of :
 - (i) Non-inductive resistor
 - (ii) pure inductor and
 - (iii) Pure capacitor, that would be placed in series with lamp in order that it may be used at its rated voltage.

- 6. (a) Explain active power, reactive power and 7 apparent power. Also explain their significance.
 - (b) Explain the phenomenon of resonance in 7 series RLC circuit. Derive expression for resonant frequency.
- (a) Show that the resonant frequency of a series 10
 RLC circuit is geometric mean of the lower and upper half power frequency.
 - (b) Define quality factor of a coil. 4
- 8. Write short note on **any four** of the following :
 - (a) Norton's Theorem 4x3.5=14
 - (b) Inductive and capacitive reactance
 - (c) Duality and dual network
 - (d) Bandwidth of resonant circuits
 - (e) Power triangle