B.TECH. IN ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
December, 2013

BIELE-010 : SIGNAL COMPRESSION

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: (i) Attempt any seven questions.
(ii) All questions carry equal marks.

1. (a) What are the measures of performances of a compression algorithm ? What do you mean by compression ratio 4:1 ? Explain with an example.
(b) Explain Shannon's theorem. Find out the expression for information associated with two independent events A and B. If a coin is thrown such that $P(H)=\frac{1}{8}$ and $P(T)=\frac{7}{8}$, find out the information associated with these two outcomes.
2. (a) Explain the properties of average information and derive its expression . $\mathbf{5 + 5 = 1 0}$
(b) Explain Markov's model by deriving its expression.
3. (a) Describe the Huffman Coding algorithm.
(b) Design a Huffman Code for a source that puts out letters from an alphabet $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ with $P\left(a_{1}\right)=P\left(a_{3}\right)=0.2$, $P\left(a_{2}\right)=0.4$ and $P\left(a_{4}\right)=P\left(a_{5}\right)=0.1$. The entropy for this source is 2.122 bits/symbol. What is the average length for this code? $5+5=10$
4. (a) Explain Golomb Codes. Design a Golomb Code for $\mathrm{m}=5$.
(b) What are the CCSDS recommendations for lossless compression?
5. Explain the following applications of LZW $\mathbf{1 0}$ algorithm.
(a) Graphics Interchange Format (GIF)
(b) Portable Network Graphics (PNG)
6. Differentiate between forward adaptive 10 quantization and backward adaptive quantization with suitable examples.
7. (a) Write down the steps of Linde-Buzo-Gray algorithm for the case when we have a training set.
$5+5=10$
(b) Explain about the tree structured vector quantization.
8. (a) Derive the rate distortion function $R(D)$ for Gaussian sources and explain Shannon lower bound.
(b) Mention the advantages of vector quantization over scalar quantization. Explain with suitable example.
9. (a) Encode the following sequence using Burrows - Wheeler Transform : 5+5=10 this $\not b$ is $\npreceq 6$ the, where $(\npreceq 6$ represent space).
(b) Differentiate between DCT and DST with respect to KLT transform.
10. Write short notes on any two of the following:
(a) Wavelet based compression
(b) JPEG 2000 standard
$2 \times 5=10$
(c) The Channel Vocoder
(d) Code Excited Linear Prediction (CELP)
