BIEL-030

DIPLOMA VIEP ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)/ ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

Term-End Examination

December, 2013

BIEL-030 : DIGITAL ELECTRONICS

Time : 2 hours

Maximum Marks : 70

Note	:	(i) (ii) (iii)	Attempt any five questions. Each carry equ marks. Question no. one is compulsory (objectives All the questions are to be answered in Engl Language only .			
1.	Atter	npt al	l objective questi	ons :	2x7=14	
	(a)	Ğive	n binary number	r is 00	000111, its 2's	
		complement in Hexadecimal form is :				
		(i)	F8	(ii)	F9	
		(iii)	07	(iv)	F3	
	(b)	For a 4096×8 EPROM, the number of				
		addr	ess lines is :			
		(i)	14	(ii)	10	
		(iii)	12	(iv)	16	
	(c)	A + /	A.B =			
		(i)	В	(ii)	AB	
		(iii)	A + B	(iv)	А	

00941

BIEL-030

P.T.O.

- (d) A 4 bit binary number whose 2's complement is also same is _____.
 (i) 0001 (ii) 0101
 - (iii) 1000 (iv) 0111
- (e) In a Right Shift register, shifting a bit by one means :
 - (i) Multiplication by 2.
 - (ii) Division by 2.
 - (iii) Subtraction of 2.
 - (iv) Addition of 2.
- (f) Which has the lowest propagation delay ? (i) ECL (ii) TTL (iii) PMOS (iv) CMOS
 - (iii) PMOS (iv) CMOS
- (g) A XNOR gate has inputs A and B and output Y. Then the output equation is
 - (i) $Y = \overline{A} B + A \overline{B}$ (ii) $Y = \overline{A} \overline{B} + AB$
 - (iii) $Y = AB + \overline{A}B$ (iv) $Y = A\overline{B} + AB$.
- (a) Give the binary, BCD, excess-3, gray code, Hexadecimal and Octal representations of decimal numbers 6 and 9.
 2x7=14
 - (b) Design a gray to binary converter circuit of 3-bit (variable).
- 3. (a) Simplify the given Boolean Function using K-map and implement the minimized expression using Logic gates. 2x7=14 $f(A, B, c, d) = \Sigma m(0, 1, 5, 9, 13, 14, 15) + d(3, 4, 7, 10, 11).$
 - (b) Using NOR gate implement OR, AND, XOR and XNOR gates.
- 4. (a) Implement 16 : 1 multiplexer using 4 : 1 multiplexer. 2x7=14
 - (b) Explain with truth table and waveforms a 4-bit Johnson Counter.

BIEL-030

- (a) Explain the operation of 4-bit PIPO (Parallel input parallel output) shift register with a neat diagram. 2x7=14
 - (b) Realize 2-input NAND gate using TTL Logic and explain its operation.
- 6. (a) Draw the circuit diagram of JK Flip Flop with preset and clear inputs and explain its operation. 2x7=14
 - (b) Draw the truth table of Full adder and implement it with Half adders. Also derive the expression for sum and carry using K-Map.
- 7. (a) Convert the following functions to canonical form. 2x7=14
 - (i) Y = A + BC + ABC.
 - (ii) $Y = (A + B)(\overline{B} + C).$
 - (b) Obtain the reduced state table and reduced state diagram for a sequential circuit whose state diagram is shown in fig.

8. Write short notes on any four :

3.5x4=14

- (a) SRAM
- (b) 2's complement subtraction.
- (c) CMOS Logic Family.
- (d) D/A converters.
- (e) Moore Machine and Mealy Machine.
- (f) Boolean algebra Basic laws.