DIPLOMA VIEP ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)/ ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

Term-End Examination
December, 2013

BIEL-030 : DIGITAL ELECTRONICS

Time: 2 hours
Maximum Marks: 70

Note: (i) Attempt any five questions. Each carry equal marks.
(ii) Question no. one is compulsory (objectives).
(iii) All the questions are to be answered in English Language only.

1. Attempt all objective questions:
$2 \times 7=14$
(a) Given binary number is 00000111 , its 2 's complement in Hexadecimal form is :
(i) F8
(ii) F 9
(iii) O 7
(iv) F3
(b) For a 4096×8 EPROM, the number of address lines is :
(i) 14
(ii) 10
(iii) 12
(iv) 16
(c) $\mathrm{A}+\mathrm{A} \cdot \mathrm{B}=$ \qquad .
(i) B
(ii) AB
(iii) $\mathrm{A}+\mathrm{B}$
(iv) A
(d) A 4 bit binary number whose 2^{\prime} s complement is also same is \qquad .
(i) 0001
(ii) 0101
(iii) 1000
(iv) 0111
(e) In a Right Shift register, shifting a bit by one means :
(i) Multiplication by 2 .
(ii) Division by 2 .
(iii) Subtraction of 2 .
(iv) Addition of 2 .
(f) Which has the lowest propagation delay?
(i) ECL
(ii) TTL
(iii) PMOS
(iv) CMOS
(g) A XNOR gate has inputs A and B and output Y. Then the output equation is
(i) $Y=\bar{A} B+A \bar{B}$
(ii) $Y=\bar{A} \bar{B}+A B$
(iii) $\mathrm{Y}=\mathrm{AB}+\overline{\mathrm{A}} \mathrm{B}$
(iv) $Y=A \bar{B}+A B$.
2. (a) Give the binary, BCD, excess-3, gray code, Hexadecimal and Octal representations of decimal numbers 6 and 9.
(b) Design a gray to binary converter circuit of 3-bit (variable).
3. (a) Simplify the given Boolean Function using K-map and implement the minimized expression using Logic gates. $2 \times 7=14$ $f(\mathrm{~A}, \mathrm{~B}, \mathrm{c}, \mathrm{d})=\operatorname{\sum m}(0,1,5,9,13,14,15)+$ $\mathrm{d}(3,4,7,10,11)$.
(b) Using NOR gate implement OR, AND, XOR and XNOR gates.
4. (a) Implement 16:1 multiplexer using 4:1 multiplexer.
(b) Explain with truth table and waveforms a 4-bit Johnson Counter.
5. (a) Explain the operation of 4-bit PIPO (Parallel input parallel output) shift register with a neat diagram.
(b) Realize 2-input NAND gate using TTL Logic and explain its operation.
6. (a) Draw the circuit diagram of JK Flip Flop with preset and clear inputs and explain its operation.

$$
2 \times 7=14
$$

(b) Draw the truth table of Full adder and implement it with Half adders. Also derive the expression for sum and carry using K-Map.
7. (a) Convert the following functions to canonical form.

$$
2 \times 7=14
$$

$$
\begin{equation*}
\mathrm{Y}=\mathrm{A}+\mathrm{BC}+\mathrm{ABC} \tag{i}
\end{equation*}
$$

(ii) $\quad \mathrm{Y}=(\mathrm{A}+\mathrm{B})(\overline{\mathrm{B}}+\mathrm{C})$.
(b) Obtain the reduced state table and reduced state diagram for a sequential circuit whose state diagram is shown in fig.

8. Write short notes on any four :
(a) SRAM
(b) 2's complement subtraction.
(c) CMOS Logic Family.
(d) D/A converters.
(e) Moore Machine and Mealy Machine.
(f) Boolean algebra - Basic laws.

