DIPLOMA VIEP COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

December, 2013

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : $\mathbf{2}$ hours

Maximum Marks: 70
Note: Attempt any five questions. Question No. 1 is compulsory. Calculator is allowed. Each question carries equal marks.

1. (a) The order of convergence of NewtonRphson method is 1.62 . (True/False) $7 \times 2=14$
(b) A homogeneous system of linear equations always has infinitely many solutions. (True/ False)
(c) Computers do not introduce any sort of error in a numerical computation. (True/ False)
(d) Define shift operator.
(e) Define forward difference operator.
(f) What is the necessary and sufficient condition for the convergence of Gauss-Seidal iteration method?
(g) Write Euler's method for solving an initial value problem.
2. (a) Use Regular-Falsi method to solve the equation $x \log _{10} x=1.2$ correct upto three decimal places.
(b) Use Newton-Raphson method to solve the 7 transcendental equation $\mathrm{e}^{x}=5 x$.
3. (a) Apply Gauss - Jordan method to solve
$x+y+z=9$,
$2 x-3 y+4 z=13$,
$3 x+4 y+5 z=40$.
(b) Solve $5 x-y+z=10, \quad 2 x+8 y-z=11$,
$-x+y+4 z=3$, using the Gauss - Seidel iteration method.
4. (a) Find the Lagrange's interpolating polynomial passing through $(0,2),(1,3)$ $(2,12)$ and $(5,147)$
(b) Show that $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$
5. Find the least square fit $y=a+b x+c x^{2}$ for the data :

x	-3	-1	1	3
y	15	5	1	5

6. (a) Evaluate the first derivative at $x=-3$ from 7 the following table :

x	-3	-2	-1	0	1	2	3
y	-33	-12	-3	0	3	12	33

(b) Use Simpson's $\frac{1}{3}^{\text {rd }}$ rule to solve the integral 7 $\int_{0}^{1} e^{x^{2}} d x$.
7. Apply the fourth order Runge-kutta method to $\mathbf{1 4}$
find $y(0.2)$, given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}, y(0)=1$
(Take stepsize $\mathrm{h}=0.1$)
8. Write short notes on any four of the following :
(a) Types of error
$3.5 \times 4=14$
(b) Linear programming
(c) Brents method
(d) Linear regression
(e) Bisection method
(f) Trapezoidal Rule

