亏 B.Tech. MECHANICAL ENGINEERING / B.Tech. IN CIVIL ENGINEERING
 Term-End Examination
 December, 2013

BICE-027 : MATHEMATICS III

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks and are to be answered in English only.

1. Find the Fourier series expansion of the following 2π - periodic function.

$$
f(x)=\left\{\begin{aligned}
\pi+x, & -\pi<x<0 \\
0, & 0 \leq x<\pi
\end{aligned}\right.
$$

2. Obtain the Fourier series expansion of $\mathrm{f}(x)=1+x,-1<x<1$, and hence show that:

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+----.
$$

3. Describe Fourier transform, Fourier sine transform $\mathbf{1 0}$ and Forrier cosine transform with examples.
4. State convolution theorem for Fourier transform and hence evaluate the inverse Fourier transform of :
$\frac{1}{12+7 i w-w^{2}}$
5. Find the complete integral of :
$2 x z \frac{\partial z}{\partial x}+2 y z \frac{\partial z}{\partial y}=z^{2}-x^{2}-y^{2}$
6. Find the general solution of :
$2 \frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}-\frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=e^{2 x+3 y}$
7. An elastic string of length l, which is fastened at its ends $x=0$ and $x=l$, is picked up at its centre point $x=\frac{l}{2}$ to a height of $\frac{l}{2}$ and is released from the rest. Find the displacement of the string at any instant of time.
8. Discuss Fourier series solution of one dimensional heat equation.
9. Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for 10 the temperature distribution in a rectangular plate subject to the following conditions:
$\mathrm{u}(0, y)=0, \mathrm{u}(\mathrm{a}, y)=0 ; \mathrm{u}(x, 0)=\mathrm{f}(x), \mathrm{u}(x, \mathrm{~b})=0$.
10. (a) Obtain a second order partial differential 10 equation from :
$\mathrm{u}=\mathrm{f}(x+\mathrm{ct})+\mathrm{g}(x-\mathrm{ct})$ where f and g are arbitrary functions and c is a constant.
(b) Solve the partial differential equation :

$$
y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0
$$

