Diploma in Civil Engineering (DCLE(G) Diploma in Mechanical Engineering (DME) DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI

Term-End Examination
December, 2013

BET-021 : MATHEMATICS-II

Time : 2 hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Attempt any seven out of the parts given in
Q. No. 1 :
$2 \times 7=14$
(a) If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}2 & -1 & 1 \\ 3 & 5 & -2\end{array}\right]$

Find $(A+B)^{T}$
(b) If $y=\log (\cos x)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\sin ^{-1} \frac{2 x}{1+x^{2}}$
(d) Find the value of $\int x \sec ^{2} x \mathrm{~d} x$
(e) Find the value of $\int_{1}^{2} \frac{\mathrm{~d} x}{x(1+\log x)}$
(f) A particle is moving along a straight line according to the formula $S=12 t-3 t^{2}$, where S is in metres and t is in seconds. Find the acceleration at any time t.
(g) Show that the function $\mathrm{f}(x)=x^{2}$ is a decreasing function in] $-\infty, 0$]
(h) Find the equation of the tangent to the curve $y=x^{2}+4 x+1$ at the point where $x=3$.
(i) The following Pie chart represents the number of valid votes obtained by four students who contested for school leadership. The total number of valid votes polled was 720 . What is the minimum number of votes obtained by any candidate?

(j) Find the principal argument of the complex number $-\sqrt{3}-i$
2. (a) Show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a)
$$

(b) Compute the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 5
\end{array}\right]
$$

3. (a) Evaluate :

$$
\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{2 x^{2}-11 x+15}
$$

(b) The function f is defined by

$$
f(x)=\left\{\begin{array}{cc}
5 x-4 & 0<x \leq 1 \\
4 x^{3}-3 x & 1<x<2
\end{array}\right.
$$

Examine whether or not $f(x)$ is continuous

$$
\text { at } x=1
$$

4. (a) If $x^{y}=\mathrm{e}^{x-y}$, prove that:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\log _{\mathrm{e}}^{x}}{\left(1+\log _{\mathrm{e}}^{x}\right)^{2}}
$$

(b) If $y=\tan ^{-1}(\sec x+\tan x)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c) If n is a positive integer, prove that :

$$
(\sqrt{3}+i)^{\mathrm{n}}+(\sqrt{3}-i)^{\mathrm{n}}=2^{\mathrm{n}+1} \cos \frac{\mathrm{n} \pi}{6}
$$

5. Evaluate each of the following :
(a) $I=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \mathrm{d} x$
(b) $I=\int_{2}^{8}|x-5| d x$
6. (a) Find the intervals in which the functions $\mathrm{f}(x)=7+12 x-3 \mathrm{x}^{2}-2 x^{3}$ is increasing or decreasing.

5, 4, 5
(b) Find two positive number such that their sum is 10 and their product is maximum.
(c) Find the point on the curve $y^{3}=x^{2}(2-x)$ where the tangent is parallel to the x-axis.
7. (a) Calculate the standard deviation for the following distribution:

$$
\begin{array}{rlrrrrrrr}
x & : & 8 & 11 & 17 & 20 & 25 & 30 & 35 \\
f: & 2 & 3 & 4 & 1 & 5 & 7 & 3
\end{array}
$$

(b) The number of students absent in a school was recorded everyday for 147 days and the frequency table is given below :

\# of students absent :	5	6	7	8	9	10	11	12	13	15	18	20
	\# of days :	1	5	11	14	16	13	10	70	4	1	1

Find the median.

