Diploma in Civil Engineering (DCLE (G))/
Diploma in Mechanical Engineering (DME) DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI

Term-End Examination

December, 201300518

BET-014 : APPLIED MECHANICS

Time : 2 hours
Maximum Marks : 70
Note : Question No. 1 is compulsory. Attempt any four from the remaining questions. Assume suitable datas wherever necessary.

1. Choose the correct answer from given alternatives in questions (a) to (g) below.
$7 \times 2=14$
(a) Which of the following statements is correct?
(i) A force is an agent which produces or tends to produce motion
(ii) A force is an agent which destroys or tends to destroy motion
(iii) A force may balance a given number of forces acting on a body
(iv) All of the above
(b) If the resultant (R) of two forces P and Q acting at an angle θ, makes an angle (α) with P, then
(i) $\tan \alpha=\frac{\mathrm{P} \sin \theta}{\mathrm{P}+\phi \cos \theta}$
(ii) $\tan \alpha=\frac{P \cos \theta}{P+\phi \cos \theta}$
(iii) $\tan \alpha=\frac{\phi \sin \theta}{\mathrm{P}+\phi \cos \theta}$
(iv) $\tan \alpha=\frac{\phi \cos \theta}{P+\phi \cos \theta}$
(c) If the arm of a couple is doubled, its moment will :
(i) be halved
(ii) remain the same
(iii) be doubled
(iv) change its direction
(d) A couple consists of :
(i) two like parallel forces of same magnitude s
(ii) two like parallel forces of different magnitudes
(iii) two unlike parallel forces of same magnitudes
(iv) two unlike parallel forces of different magnitudes.
(e) The moment of inertia of a triangular section of base (b) and hight (h) about an axis through its base is given by
(i) $\frac{\mathrm{bh}^{3}}{12}$
(ii) $\frac{\mathrm{bh}^{3}}{18}$
(iii) $\frac{\mathrm{bh}^{3}}{36}$
(iv) $\frac{\mathrm{bh}^{3}}{64}$
(f) A lifting machine having an efficiency less than 50% is knows as :
(i) reversible machine
(ii) non-reversible machine
(iii) ideal machine
(iv) none of the above
(g) The time of flight of a projectile on a horizontal plane is :
(i)
$2 u \sin \alpha$ g
$\frac{2 u \cos \alpha}{g}$
(iii) $\frac{u \sin \alpha}{g}$
(iv) $\frac{\mathrm{u} \cos \alpha}{\mathrm{g}}$
2. (a) State clearly the law of moments.

6
(b) A uniform wheel of 600 mm diameter, 8 weighing 5 kN rests against a rigid rectangular block of 150 mm height as shown in figure1. Find the least pull, through the centre of the wheel, required to turn wheel over corner A of the block. Also find the reactions of the block. Take all surfaces to be smooth.

Figure 1
3. (a) Explain the conditions of static equilibrium.
(b) An electric light fixture weighing 15 Newtons hangs from a point by C, two strings $A C$ and $B C$. The string $A C$ is inclined at 60° to the horizontal and BC at 45° to the vertical as shown in figure 2. Using Lamr's theorem or otherwise determine the forces in strings $A C$ and $B C$.

4. (a) Define coefficient of friction and limiting friction.
(b) Two blocks A and B of weights 1 kN and 2 kN respectively are in equilibrium as shown in figure 3. If the coefficient of friction between two blocks, as well as the block B and the floor is 0.3 , find the force (P) required to move the block B.

Figure 3
5. A pin jointed cantilever truss of 3 m span is loaded as shown in figure 4 . Find the forces in the various members of the framed truss and tablulate the results.

Figure 4
6. (a) What is the law of a machine? Derive an equation for the same.
(b) In a single purchase winch crab, the number 8 of teeth on pinion is 25 and that on spur wheel is 250 , Radii of drum and handle are 150 mm and 300 mm respectively. Find the efficiency of machine and the effect of friction, if an effort of 20 N can lift a load of 300 N .
7. A bullet is fired upwards at an angle of 30° to the $\mathbf{1 4}$ horizontal from a Point ' A ' on the hill, and it strikes the target which is 80 m below ' A ' . The initial velocity of bullet is $10 \mathrm{~m} / \mathrm{s}$. Calculate the actual velocity with which the bullet will strikes the target.

