No. of Printed Pages : 4

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) /DIPLOMA IN MECHANICAL ENGINEERING (DME)

DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI

Term-End Examination
December, 2013

BET-011 : MATHEMATICS-I

Time : 2 hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any four questions out of the remaining. Use of scientific calculator is permitted.

1. Answer any seven of the following : $2 \times 7=14$
(a) Find the value of λ s.t $|\lambda \vec{a}|_{=1}$ where \vec{a} is a non-zero vector.
(b) In flow chart, what is the meaning of the following shape.

(c) Simplify $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
(d) Find the characteristics of the logarithms of 0.003741 .
(e) Insert Six Arithmatic means between 2 and 16.
(f) Find the middle term in the expansion of

$$
\left(3 x-\frac{x^{3}}{6}\right)^{7}
$$

(g) Find the principal value of $\operatorname{cosec}^{-1}(-1)$
(h) Find the equation of a line with slope 3 and y-intercept 2.
(i) Find the co-ordinates of the centre and radius of the circle whose equation is

$$
x^{2}+y^{2}-12 x+6 y+45=0
$$

(j) Find the equation of a hyperbola whose focus is $(1,2)$, eccentricity $=\sqrt{3}$ and directrix is $2 x+y=1$
2. (a) $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}, y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

5, 4, 5

Find the value of $x^{2}+x y+y^{2}$.
(b) Evaluate $: \log _{81} 27$
(c) If α, β are the roots of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$, Find the value of $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}$
3. (a) Find the sum of 19 terms of an A.P whose $\mathrm{n}^{\text {th }}$ term is $2 \mathrm{n}+1$

4, 5, 5
(b) If the first term of a G.P exceeds the second term by 2 , and the sum of infinite terms is 50 , Find the G.P
(c) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, show that $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are also in G.P
4. (a) Using binomial theorem, prove that $6^{n}-5 n$ always leaves the remainder 1 when divided by 25 .

5,4,5
(b) Find the value of $\sin ^{2}\left(-300^{\circ}\right) \cos ^{3}\left(120^{\circ}\right)+\cos ^{2}\left(-240^{\circ}\right) \sin ^{3}\left(390^{\circ}\right)$
(c) Show that
$\tan x+\tan 2 x+\tan 3 x=-\tan x \tan 2 x \tan 3 x$
5. (a) The angle of elevation of a tower from a point A due south of it is x and from a point B due east of A is y. If $\mathrm{AB}=l$, show that h, the height of the tower is given by $h^{2}\left(\cot ^{2} y-\cot ^{2} x\right)=l^{2}$

6, 4, 4
(b) Prove that

$$
\cos \left(\sin ^{-1} x\right)=\sin \left(\cos ^{-1} x\right)=\sqrt{1-x^{2}},|x| \leq 1 .
$$

(c) Find the equation of the lines which pass through $(4,5)$ and make an angle 45° with the line $2 x+y+1=0$
6. (a) Find the equations of the tangents to the $\mathbf{5 , 4 , 5}$ circle $x^{2}+y^{2}=9$ and which are parallel to $3 x+4 y=0$
(b) Find the co-ordinates of the vertex, focus, length of the latus rectum, equation of the directrix of the parabola $2 x^{2}=-7 y$.
(c) Find the focal distance of the point $P(5,4 \sqrt{3})$ on the ellipse $16 x^{2}+25 y^{2}=1600$
7. (a) Compute :
$[(\vec{i}-\vec{j}+\vec{k}) \times(2 \vec{i}-3 \vec{j}-\vec{k})] \times[-3 \vec{i}+\vec{j}+\vec{k}]$
(b) Find the scalar m so that the vectors $2 i+j-m k$ is perpendicular to the sum of the vectors $i+j+2 k$ and $3 i+2 j+k$
(c) Show by vector method that the diagonals of a rombus are at right angles.

