BME-029

0101

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED **MANUFACTURING**)

Term-End Examination

December, 2013

BME-029 : ROBOTICS

Time : 3 hours

Maximum Marks : 70

Note :	Attempt any five questions.	All questions carry equal
	marks.	

1.	(a)	What are the four D's of robotics ? Briefly	7
		explain.	
	(b)	What is the shape of the work space of	7

- 2. Give the requirements of an actuator for (a) 7
 - robotic applications. 7
 - Distinguish accuracy from repeatability. (b)
- 3. (a) What is the meanings orthogonal property 7 of a rotation matrix ? Find out inverse of following rotation matrix :

	Cosα	– Sinα	0]	
Q =	Sinα	Cosα	0	
	0	0	1	

SCARA robot? Draw it.

- (b) Define degree of freedom (DOF) of a 7 mechanical system. With suitable notation give the formulae of DOF as Grubler -Kutzback Criterion.
- 4. (a) Find the Jacobian for any three link planar9 manipulator with revolute joints.
 - (b) Describe two important methodologies for 5 robot dynamics.
- Explain the order of trajectory that has to satisfy 14 position , velocity and acceleration-constraints at the initial and final points Derive the function.
- Classify the type of robot control systems. With 14 the help of suitable block diagram describe any one of the robot control systems.
- (a) Differentiate on-line and off-line 7 programming.

7

(b) What is programming by simulation ?

BME-029

2