BME-028

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

December, 2013

BME-028 : FLUID MECHANICS

Time : 3 hours

0263

Maximum Marks : 70

Note : Attempt **any seven** questions. All questions carry **equal** marks. Use of calculator is **permitted**.

- (a) Explain the following properties of fluids 5 with suitable examples.
 - (i) Viscosity
 - (ii) Specific gravity
 - (iii) Specific weight
 - (b) Calculate the capillary effect in mm. in a 5 glass tube of 4 mm diameter when immersed in a container of :
 - (i) Water and
 - (ii) Mercury

Surface tension of water and mercury are 0.0735 and 0.0510 N/m respectively. The wetting angle (angle of contact) for water is 0° and that for mercury is 130° .

Specific Gravity of mercury = 13.6, Specific Gravity of water = 1 and specific weight of water = 9806 N/m^3 .

5

5

5

- (a) Determine the magnitude, direction and point of action of the bouyant force.
 - (b) What fraction of an iceberg would be above the free surface in the ocean, if the density of ice is 920 kg/m³ and density of sea water is 1030 kg/m³ ?
- (a) Derive an expression for discharge over a 5 triangular notch.
 - (b) Derive the continuity equation for the fluid 5 flow.
- (a) Define flow net and enumerate its uses and 5 applications.
 - (b) The velocity potential is given by $\phi = x^2 y^2$. Does this represent a possible flow field ? If it so, prove that the flow is irratational.
- 5. (a) A cylinder of diameter D and length *l* is placed in a steady uniform stream of velocity V. Density of the fluid is ρ and dynamic viscosity is μ. Find the drag force 'F' on the cylinder as a function of the variables V, D, *l* ρ and μ.

BME-028

2

- 8. (a) What is meant by "equivalent pipe 5 length"?
 - (b) Find an expression for head loss in an orifice 5 flow in terms of coefficient of velocity and jet velocity.
- 9. (a) Obtain exact solutions of Navier strokes 5 equations as applicable to some laminar flow.
 - (b) Two plane boundaries are 6 mm apart, the space between them is filled with a liquid of viscosity of 1.2 kg/m.s. What force would be required to move edgewise through the liquid, a plate 3mm thick and 25cm² at a velocity of 15cm/sec. ?
- 10. (a) At a certain value of Re (Reynold's No.), 5 there is a sudden drop in the value of C_D in case of a sphere. What is this value Re ? Also explain the reason for such a drop in C_D .
 - (b) What is the physical significance of 5 Reynold's Number and Froude Number ?

4

- (b) The wave resistance of a ship's model built to a scale of 1: 25 is found to be 2.0 Newtons. What is the scale for velocity and time in the model ? State the governing parameters in the model similitude. What is the wave resistance in the prototype ?
- 6. (a) Define mixing length and state the relationship that exists between the turbulent shear stress and the mixing length.
 - (b) Air at 20°C (Pair = 1.208 kg/m³, $\mu = 1.85 \times 10^{-5}$ kg/ms) flows over a 2.0 m wide plate at 10.0 m/s velocity. Determine :
 - (i) τ_0 and δ at a place where the boundary layer ceases to be laminar.
 - (ii) Drag force on one side of the plate in the laminar region.
- (a) Calculate head loss due to friction in pipes 5 and obtain hydraulic gradient and total energy lines.
 - (b) A 600 mm diameter rough pipe carries 5 600 lit/sec of water over a distance of 1 km. Determine ' h'_f if ks = 3.0 mm.

BME-028

P.T.O.

3

5

5

5