BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING)

Term-End Examination
December, 2013

BME-027 : HEAT AND MASS TRANSFER

Time: 3 hours
Maximum Marks : 70
Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) A steam pipe $(\epsilon=0.85)$ of 0.5 m diameter 5 has a surface temperature of 550 K . The pipe is located in a room at $30^{\circ} \mathrm{C}$ and the convection heat transfer coefficient is $28 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate the combined heat transfer coefficient and the rate of heat transfer per unit length of the pipe.
(b) What do you mean by critical radius of 5 insulation? Derive an expression for critical radius of insulation over a cylinder.
2. (a) Define Fick's law of diffusion. Explain how 5 does diffusion take place?
(b) Distinguish between the surface and 5 volumetric radiation. What is the wavelength range for infra red and visible radiation ?
3. (a) Show that the temperature profile for heat conduction through a plane wall with a heat source and constant thermal conductivity is parabolic.
(b) A load of peas at a temperature of $25^{\circ} \mathrm{C}$ is to be cool down in a room at a constant air temperature of $1^{\circ} \mathrm{C}$. How long the peas will require to cool down to $2^{\circ} \mathrm{C}$ when the surface heat transfer coefficient of the peas is $5.81 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$?
4. (a) One end of a long rod is inserted into a furnance while the other projects into ambient air. Under steady state the temperature of the rod is measured at two points 75 mm apart and found to be $125^{\circ} \mathrm{C}$ and $88.5^{\circ} \mathrm{C}$, respectively, while the ambient temperature is $20^{\circ} \mathrm{C}$. If the rod is 25 mm diameter and $\mathrm{h}=23.36 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, find the thermal conductivity of the rod material.
(b) Derive an expression for heat transfer and temperature distribution for a rectangular fin with its tip at adiabatic condition.
5. (a) With the help of Buckingham π - theorem show that for forced convection heat transfer
$\mathrm{Nu}_{\mathrm{d}}=C \operatorname{Re}_{\mathrm{d}}^{\mathrm{a}} \operatorname{Pr}^{\mathrm{b}}$
(b) A rectangular plate is 120 cm long in the direction of flow and 200 cm wide. The plate is maintained at $80^{\circ} \mathrm{C}$ when placed in nitrogen that has a velocity of $2.5 \mathrm{~m} / \mathrm{s}$ and a temperature of $0^{\circ} \mathrm{C}$. Determine the average heat transfer coefficient and the total heat transfer from the plate.

The properties of Nitrogen at $40^{\circ} \mathrm{C}$ are $\mathrm{P}=10142 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}_{\mathrm{p}}=1.04 \mathrm{~kJ} / \mathrm{kgK}$; $v=15.63 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and $\mathrm{k}=0.0262 \mathrm{~W} / \mathrm{mK}$.
6. (a) Derive an expression for radiation heat transfer for two surface enclosure. What are the assumptions ?
(b) Consider a diffuse circular disk of diameter of area $A_{i} \ll A_{j}$. The surfaces are parallel, and A_{j} is located at a distance L from the centre of A_{j}. Obtain an expression for the view factor F_{ij}.
7. (a) What is evaporation ? Draw a sketch of 5 single effect evaporator and explain its working principle.
(b) Explain various application of boiling heat 5 transfer.
8. (a) Determine the overall heat transfer coefficient U_{o} based on the outer surface of a steel pipe with an ID of $D_{i}=2.5 \mathrm{~cm}$ and an OD of $\mathrm{D}_{\mathrm{o}}=3.34 \mathrm{~cm}\left[\mathrm{k}=54 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right]$ for the following flow and fouling conditions :
$\mathrm{h}_{\mathrm{i}}=1800 \mathrm{~W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right) ; \mathrm{h}_{\mathrm{o}}=1250 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$;
$\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{o}}=0.00018 \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$
(b) Consider a cross flow heat exchanger with hot and cold fluids entering at uniform temperatures. Illustrate with sketches the exit temperature distribution for the following cases :
(i) Both fluids are unmixed and
(ii) Cold fluid is unmixed, hot fluid is mixed.
9. (a) Show that for a mass transfer in a boundary layer over a flat plate is given by :
$S h=0.664 \operatorname{Re}_{\mathrm{L}}^{1 / 2} \mathrm{~S}_{\mathrm{C}}^{1 / 3}$
(b) Explain the phenomenon of equimolar 5 counter diffusion. Derive an expression for equimolar counter diffusion between two gases or liquids.
10. (a) A tube is coated on the inside napthalene and has an inside diameter of 20 mm and a length of 1.10 m . Air at 318 K and an average pressure of 101.3 kPa flows through this pipe at a velocity of $0.8 \mathrm{~m} / \mathrm{s}$. Assuming that the absolute pressure remains essentially constant, calculate the concentration of nepthalene in the exit air. Use the physical properties given below:
$D_{A B}=6.92 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ Vapour pressure $\mathrm{p}_{\mathrm{Ai}}=74.0 \mathrm{~Pa} \quad \mu_{\text {air }}=1.932 \times 10^{-5} \mathrm{~Pa}$ $\rho_{\text {air }}=1.114 \mathrm{~kg} / \mathrm{m}^{3}$.
(b) Derive the continuity equation for a binary mixture.

