BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) B.Tech. (Aerospace Engineering)

Term-End Examination
December, 2013

BME-021 : PRINCIPLES OF ELECTRICAL AND ELECTRONICS SCIENCE

Time : 3 hours Maximum Marks : 70

Note: Answer seven questions in all. Three questions from section - A, three questions from section-B and the compulsory question number 1.

1. State whether the following assertions are true or false :
$10 \times 1=10$
(a) Pure semiconductors behave like an insulator at low resistance.
(b) If 2 capacitors of 5 F are in parallel, the net capacitance is 10 F .
(c) A constant current source has infinite internal resistance.
(d) Total resistance of a parallel circuit is double of the smallest branch resistance.
(e) During series resonance, current in the circuit is minimum.
(f) A modem is a device which allows 2 computers to communicate over standard phone lines.
(g) In a zener diode, a large current change produces a very small change in the diode voltage in the breakdown region.
(h) An astable multivibrator using op-amp comparator is used to generate symmetrical square wave signal.
(i) In 3 - phase star connection $V_{L}=\mathrm{Vph}$ and $\mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{Iph}$.
(j) The number of address lines in 8085 microprocessor determines the number of memory locations that the CPU can address.

SECTION-A

Answer any three questions from this section.
2. (a) State and explain Thevenin's Theorem with suitable example.
(b) Find out the value of resistance ' R ' in the figure 1.

Fig. 1
3. (a) Define and explain in brief rms value and average value for any alternating quantity.
(b) Find the rms, average values and form factor 5 for the full wave rectified sine wave shown in the figure 2.

Fig. 2
4. (a) Explain what you understand by 5 co-efficient of coupling. Derive the expression for it.
(b) An iron ring having a cross sectional area of $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ and a mean diameter of 18 cm has a coil of 270 turns uniformly wound over it. A current of 1.27 A flows through the coil which produces a flux of 1.13 mWb in the ring. Find the reluctance of the circuit and the relative permeability of iron.
5. (a) Explain the principle of operation of a 3 - phase Induction motor.
(b) A 3 phase, 4 pole induction motor is supplied from a $50 \mathrm{~Hz}, 400 \mathrm{~V}$ supply. The motor runs at a speed of 1450 rpm . Calculate,
(i) Synchronous speed.
(ii) $\%$ slip of the motor.
(iii) If the slip is 4%, calculate the rotor speed.
6. (a) Explain resonance in parallel a.c circuits. Hence derive the formula of the frequency at which the circuit resonates.
(b) An inductive coil having a resistance of 4 17Ω and inductance of 0.5 H is connected in parallel with a capacitor of $120 \mu \mathrm{~F}$. Find the frequency at which the circuit becomes purely resistive. Also find the current under this condition. Supply voltage is 230 V .

SECTION-B

Answer any three questions from this section.
7. (a) Explain the I-V characteristics of a P-N 5 junction diode.
(b) Discuss in brief the operation of JFET.
8. Explain in detail the architecture of $8085 \quad \mathbf{1 0}$ microprocessor.
9. (a) Explain the use of 555 timer IC as an astable multivibrator.
(b) Discuss the working of an SR type flip-flop. 5
10. (a) Discuss working of a Digital to Analog 5 Convertor (DAC).
(b) Which arithmetic operators are used in a 5
microprocessor. Explain with examples.
11. (a) Discuss use of a BJT as a common emitter amplifier.
(b) What are the basic functions of MODEM ?

