BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING)
 00498
 (BTMEVI)

Term-End Examination
December, 2013

BME-020 : KINEMATICS \& DYNAMICS OF MECHANISMS

Time : $\mathbf{3}$ hours

Maximum Marks : 70
Note: Attempt any five questions. Use of calculator is allowed. All questions carry equal marks.

1. (a) What is a kinematic pair ? How can it be 8 classified ? Explain with examples.
(b) What is meant by degree of freedom of a mechanism ? Explain the Grubler's criterion for plane mechanism to obtain the degree of freedom.
2. (a) A four bar kinematic chain is shown in figure (1). Draw its inversions and identify the nature of each mechanism.

Figure - 1
(b) In a mechanism shown in figure (2) the crank $A B$ rotates about point A at uniform speed of 240 rpm in clockwise direction. The link $C D$ oscillates about the fixed point D, which is connected to link $A B$ by a coupler link $B C$. The slider F moves in horizontal guides, being driven by the link EF.
Determine :
(i) velocity of slider F
(ii) angular velocity of link CD.

Figure - 2
3. Synthesize a four bar mechanism to generate a function $y=\log _{10} x$ in the interval $1 \leq x \leq 10$. The input crank length is 50 mm . The input crank is to rotate from 45° to 105° while the output link moves from 135° to 225°. Use three accuracy points with Chebyshev's spacing.
4. (a) Explain the effect of centrifugal tension on $\mathbf{1 0}$ the power transmission capacity of belt drive.
(b) Explain the following :
(i) Law of belting
(ii) Slip
(iii) Open belt drive and crossed belt drive
(iv) Flat belt and V belt drive
5. (a) What do you mean by interference between 10 two mating gears ? State the condition under which interference can be avoided.
(b) Compare cycloidal and involute tooth $\mathbf{4}$
profile.
6. (a) A cam is to give following motion to a knife edged follower :
(i) To raise the follower through 30 mm with uniform acceleration and deceleration during 120° cam rotation.
(ii) Dwell for next 30° cam rotation
(iii) lower the follower with uniform velocity during the next 90° cam rotation
(iv) Dwell for the rest of cam rotation

The cam has a minimum radius of 30 mm and rotates counter clockwise at a uniform speed of 800 rpm . Draw the cam profile if the line of stroke of the follower passes through the axis of cam shaft.
(b) Differentiate between governor and flywheel.
7. A shaft carries four masses in parallel planes

14 A, B, C, and D, in this order, along it. The masses at B and C are 18 kg and 12.5 kg , respectively, and each has an eccentricity of 6 cm . The masses at A and D have an eccentricity of 8 cm . The angle between the masses at B and C is 100°, and that between the masses at B and A is 190° (both angles being measured in the same direction). The axial distance between the planes A and B is 10 cm and that between B and C is 20 cm . If the shaft is in complete dynamic balance, determine :
(i) the masses at A and D
(ii) the distance between the planes C and D, and
(iii) the angular position of the mass at D .
8. The torque delivered by a two stroke engine is represented by :
$\mathrm{T}=(1000+300 \sin 2 \theta-500 \cos 2 \theta) \quad$ N.M where θ is the angle turned by the crank from the inner dead centre position. The engine speed is 250 rpm . The mass of the flywheel is 400 kg and radius of gyration 400 mm . Determine.
(a) power developed
(b) total percentage fluctuation of speed
(c) angular acceleration of flywheel when the crank has rotated through an angle of 60° from inner dead centre.
(d) maximum angular acceleration and retardation of the flywheel.

