BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTECVI/BTELVI/BTCSVI

Term-End Examination December, 2013

BME-017 : STRENGTH OF MATERIALS

Time : 3 hours
 Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. (a) Derive the relationship between modulus of 5 elasticity and bulk modulus.
(b) In an experiment, young modulus and 5
modulus of rigidity of a material have been determined as 120 GPa and 50 GPa respectively. Calculate the Poisson's Ratio and modulus of the material.
2. Evaluate the principal stresses and principal $\mathbf{1 0}$ planes for the state of stress shown in figure.

3. A shaft is to be subjected to a bending moment of $6 \mathrm{kN}^{-\mathrm{m}}$ along with a torque of $8.5 \mathrm{kN}^{-\mathrm{m}}$. Shaft is to be made of a material with safe strength values in tension, compression and shear of $125 \mathrm{~N} / \mathrm{mm}^{2}$. $105 \mathrm{~N} / \mathrm{mm}^{2}$ and $84 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Find the diameter of the shaft ?
4. A simply supported beam is carrying a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over a length of 6 m from the left end and points loads $6 \mathrm{kN}, 3 \mathrm{kN}$ and 4 kN at distances of $7 \mathrm{~m}, 8 \mathrm{~m}$ and 9 m , respectively. The length of the beam is 12 m . Draw SF diagram and BM diagram for the beam and find the maximum BM.
5. A rectangular beam $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ is 8 m long and is simply supported at the ends. It carries a point load of 45 kN at midspan. Find the maximum bending stresses in the beam.
6. A rectangular beam, having section $80 \mathrm{~mm} \times 120 \mathrm{~mm}$ carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ over a span of 2 m and an axial compressive force of 10 kN . Calculate
(a) Maximum fibre stress,
(b) Fibre stress at a point 0.50 m from the left end of the beam and 40 mm below the neutral axis.
7. When a concentrated force of 1 kN is applied at the midspan point of a simply supported beam, a static deflection of 5 mm is produced. The same load produces a maximum stress of $158 \mathrm{MN} / \mathrm{m}^{2}$. Determine the magnitude of the instantaneous stress produced when a weight of 10 kg is allowed to fall through a height of 12 mm on to the beam at midspan. What will be the instantaneous deflection?
8. A steel shaft transmits 105 kW at 160 RPM. If the 10 shaft is 100 mm diameter, find the torque on the shaft and the maximum sheat stress induced. Find also the twist of the shaft in a length of 6 m . Take $\mathrm{G}=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
9. A steel pipe 100 mm external diameter and 75 mm internal diameter is subjected to an internal pressure of $14 \mathrm{MN} / \mathrm{m}^{2}$ and an external pressure of $5.5 \mathrm{MN} / \mathrm{m}^{2}$. Find the distribution of loop stress across the wall of the pipe.
10. A leaf spring having a span of 1.40 m consists width and thickness of leaves to be 100 mm and 12 mm respectively. The maximum bending stress is $150 \mathrm{~N} / \mathrm{mm}^{2}$ and the spring must absorb $125000 \mathrm{~N}^{-\mathrm{mm}}$ when straightened. Calculate the number of leaves and initial curvature. Take $\mathrm{E}=200 \mathrm{GPa}$.
