BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTECVI/BTELVI/BTCSVI

Term-End Examination

December, 2013

BME-009 : COMPUTER PROGRAMMING AND APPLICATION

Time : 3 hours

Maximum Marks : 70

Note: Attempt any four questions from Part-A. Attempt any one question from Part-B. All questions carry equal marks. Use of scientific calculator is permitted.

PART-A

1. (a) Find a root of the equation $\cos x=3 x-1$ correct to three decimal places, using iteration method.
(b) Using Muller's method, find a root of the equation $y(x)=x^{3}-3 x-5=0$ which lies between 2 and 3 .
2. (a) Solve the following system of equations.
$3 x_{1}+x_{2}+2 x_{3}=3$.
$2 x_{1}-3 x_{2}-x_{3}=-3$
$x_{1}+2 x_{2}+x_{3}=4$
Using Cramer's rule
(b) Find the inverse of the matrix.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 / 2 & 1
\end{array}\right]
$$

Using the Gauss - Jordan method.
3. (a) Determine the Eigen values and the 7 corresponding eigen vectors of the following matrices.

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
3 & -2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Let $\mathrm{f}(x)=(x-2)^{4}=0$. Starting with the initial approximation $x_{0}=2.1$, compute the iterations x_{1}, x_{2}, x_{3} and x_{4} using Newton - Raphson method.
4. (a) A third degree polynomial passes through the points $(0,-1),(1,1),(2,1)$ and $(3,-2)$. Find the polynomial and evaluate the y - coordinate at $x=4$ using Newton's interpolation.
(b) Using Bessel's formula, find the value of $f(5)$ 7 when the values of x and $\mathrm{f}(x)$ are given by the following table:

x	$:$	0	4	8	12
$\mathrm{f}(x)$	$:$		143	158	177
	199				

5. (a) Evaluate $\int_{0}^{6} \frac{\mathrm{~d} x}{1+x^{2}}$, using Trapezoidal rule, 7 with six subintervals.
(b) Using Lagrange's interpolation, find the value of x when $y=3$ from the following table :

x	$:$	4	7	10	12
y	$:$	-1	1	2	4

6. (a) Given $y^{\prime}=-x y^{2}, y(2)=1$. Find $y(2.1)$ and
$y(2.2)$ with $h=0.1$ using Runge - Kutta method of order two.
(b) Solve by Taylor series method

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y^{2}, \text { given } y(0)=0
$$

PART-B

7. (a) Write a C++ program that reads total marks of 20 students in a class. Find out number of students who have obtained total marks below class average.
(b) Explain the following with examples:
(i) Static and dynamic binding 4
(ii) Encapsulation 3
8. (a) Write a C ++ program, which generates 8 factorial of a number using function fact ().
(b) Explain the following with examples. 6
(i) Friend function
(ii) Polymorphism
