No. of Printed Pages : 2

BIEEE-018

B.Tech. ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2013

BIEEE-018 : ADVANCED POWER ELECTRONICS

Time : 3 hours

00391

Maximum Marks : 70

Note : Attempt any **seven** questions out of **eight** questions. Each question carries **equal** marks.

1.	(a)	Explain switching characteristics of an	6
		IGBT. Why are IGBT becoming popular in	
		their applications ? Enumerate some	
		applications of IGBT.	

- (b) A bipolar transistor having β in range θ 4 to 40. The load resistance Rc=11 Ω , dc supply voltage Vcc=200V, V_B=10V, If V_{CE}(rat)=1.0v and VB_E(rat)=1.5 V find
 - (i) The value of R_B that results in saturation with an over drive factor 5.
 - (ii) forced β_f
 - (iii) Powerloss P_T
- 2. What is harmonic ? Explain the methods to 10 eliminate harmonics from inverter O/P voltage.
- Explain the working of 3φ full converter with 10 the help of waveforms. Consider the load in RL type.

BIEEE-018

- **4.** (a) Explain simisoidal pulse modulation as used **6** in PWM inverters.
 - (b) Calculate the O/P frequency of a series 4 inverter with following parameters. L = 6 mH, $c = 1.2 \mu f$, load resistance $R = 100\Omega$ ToH = 0.2ms, of load resistance is varied from 40 to 140 ohms. Find the range of O/P frequency.
- 5. Explain the $3 \phi 120^{\circ}$ mode of conduction in bridge 10 inverters. Draw the waveforms also.
- 6. What is the need of compensation ? Give a 10 comparison b/w series compensation and shunt compensation. Explain the operation of Thyristor Controlled Reactor (TCR).
- 7. Derive a general expression for fundamental 10 harmonic content of a quasi squarewave o/p inverter. Plot curve showing harmonic variation of the wave on period.

10

- 8. Write short notes on :
 - (a) GTO
 - (b) MOSFET
 - (c) Active filter
 - (d) Effect of blanking time in inverter.