No. of Printed Pages : $\mathbf{3}$
BIEE-021

B.Tech. IN ELECTRICAL ENGINEERING

Term-End Examination
 December, 2013

BIEE-021 : CONTROL SYSTEM

Time : 3 hours
Maximum Marks : 70
Note : Attempt any five questions. Each question carry equal marks. Use of scientific calculator and graph papers are permitted.

1. (a) Find the transfer function of the network 7 shown in fig. 1. Plot its poles and zeros for $\mathrm{R}=\mathrm{C}=1$.

(b) Draw signal flow graph for the equation
$\frac{d^{2} y}{d x^{2}}+\frac{2}{3} \frac{d y}{d x}+\frac{11}{2} y=x$
2. (a) Obtain the transfer function of the mechanical system shown in fig.2.

Fig-2
(b) Are the two systems given in fig.3(a),(b) equivalent. If not then prove so :

Fig-3(a)

Fig-3(b)
3. (a) A unity FB system is characterised by an
open loop transfer function $G(S)=\frac{K}{S(S+10)}$.
Determine Gain K so that $\xi=0.5$. Also determine $t_{s^{\prime}}, M_{p}$ and t_{p} for a unit step input.
(b) Differentiate between :
(i) Open loop and closed loop control system.
(ii) Regulator and tracking control
4. Determine the open loop transfer function of a system whose approximate plot is shown in fig.4.

Fig-4
5. Consider a matrix A given below find the eigen values, eigen vector, modal matrix and diagonalise it.

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
3 & 0 & 2 \\
-12 & -7 & -6
\end{array}\right)
$$

6. Write short note on following :
(a) Frequency domain specifications
(b) Routh-Hurwitz stability criteria
7. (a) Sketch the polar plot of $G(S)=\frac{1}{S(1+S T)}$. $\quad 7$
(b) Determine the range of K such that 7 feedback system having characteristic equation

$$
S\left(S^{2}+S+1\right)(S+4)+K=0
$$

8. Define any four of the following :
(a) Gain Margin and Phase Margin
(b) PID Controller
(c) Synchros
(d) Mason's Gain Formula
(e) Pneumatic Controller
