B.TECH. IN ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2013

BIEE-009 : APPLIED ELECTROMAGNETICS

Time : 3 hours

Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks.

- **1.** Derive the expression for Divergence of \overline{D} in **10** Cartesian co-ordinate system.
- 2. Given the points $P(\rho = 5, \phi = 60^{\circ}, Z = 2)$ and 10 $Q(\rho = 2, \phi = 110^{\circ}, Z = -1)$; find
 - (a) The distance $|\overline{R}_{PQ}|$;
 - (b) A unit vector in cartesian co-ordinates at P that is directed towards Q ;
 - (c) a unit vector in cylindrical coordinates at P that is directed towards Q;
- 3. (a) Find the expression for potential difference 5 V_{AB} in the field of a point charge.
 - (b) Assume a zero reference at infinity and find 5the potential at P(0, 0, 10) that is caused by this charge configuration in free space:
 - (i) 20 nC at the origin.
 - (ii) 10 nC/m along the line x = 0, z = 0, -1 < y < 1.

- 4. (a) Derive the continuity equation for current. 5
 - (b) Assume that an electron beam carries a total current of $-500 \ \mu$ A in the \overline{ar} direction, and has a current density J_z that is not a function of ρ or ϕ in the region $0 \le \rho \le 10^{-4}$ m and is zero for $\rho > 10^{-4}$ m. If the electron velocities are given by $V_z = 8 \times 10^7 z$ m/s, calculate ρ_v at $\rho = 0$ and z = (i) 1mm ; (ii) 2 cm. 3+2=5
- 5. Find the incremental field $\Delta \overline{H}_2$ at P₂ caused by a **10** source at P₁ of I₁ $\Delta \overline{L}_1 =$
 - (a) $2\pi \bar{a}_z \mu A.m$, given $P_1(4, 0, 0)$ and $P_2(0, 3, 0)$;
 - (b) $2\pi \bar{a}_z \mu A.m$, given $P_1(4, -2, 3)$ and $P_2(0, 3, 0)$;

6. Derive the point form of Ampere's Circuital Law. 10

- 7. Given $\overline{H} = y^2 z_{\overline{a}x} + 2(x+1)yz\overline{a}_y (x+1)z^2\overline{a}_z$; find 4+2+4=10
 - (a) $\oint \overline{H} \cdot d\overline{L}$ around the square path going from P(0, 2, 0) to A(0, 2+b, 0) to B(0, 2+b, b) to C(0, 2, b) to P.
 - (b) Evaluate $\oint \overline{H} \cdot d\overline{L}$ for b = 0.1
 - (c) Find $\overline{\nabla} \times \overline{H}$.

8. Derive the magnetic boundary conditions. 10

- 9. (a) Derive wave equation for Electric Field 6 Intensity.
 - (b) Define Frequency, Wavelength, Velocity **4** and intrinsic impedance.

BIEE-009

2

10. Write short notes (any two) :

- (a) Smith chart.
- (b) SWR.
- (c) Boundary conditions for perfect conductor.

BIEE-009