B.TECH. IN ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination
December, 2013

BIEE-009 : APPLIED ELECTROMAGNETICS

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note : Attempt any seven questions. All questions carry equal marks.

1. Derive the expression for Divergence of $\overline{\mathrm{D}}$ in $\mathbf{1 0}$ Cartesian co-ordinate system.
2. Given the points $P\left(\rho=5, \phi=60^{\circ}, Z=2\right)$ and 10 $Q\left(\rho=2, \phi=110^{\circ}, Z=-1\right)$; find
(a) The distance $\left|\overline{\mathrm{R}}_{\mathrm{PQ}}\right|$;
(b) A unit vector in cartesian co-ordinates at P that is directed towards Q ;
(c) a unit vector in cylindrical coordinates at P that is directed towards Q ;
3. (a) Find the expression for potential difference 5 $V_{A B}$ in the field of a point charge.
(b) Assume a zero reference at infinity and find 5 the potential at $\mathrm{P}(0,0,10)$ that is caused by this charge configuration in free space:
(i) 20 nC at the origin.
(ii) $10 \mathrm{nC} / \mathrm{m}$ along the line $x=0, z=0$, $-1<y<1$.
4. (a) Derive the continuity equation for current.
(b) Assume that an electron beam carries a total current of $-500 \mu \mathrm{~A}$ in the $\overline{\mathrm{r}}$ direction, and has a current density J_{Z} that is not a function of ρ or ϕ in the region $0 \leq \rho \leq 10^{-4} \mathrm{~m}$ and is zero for $\rho>10^{-4} \mathrm{~m}$. If the electron velocities are given by $\mathrm{V}_{\mathrm{z}}=8 \times 10^{7} \mathrm{z} \mathrm{m} / \mathrm{s}$, calculate ρ_{v} at $\rho=0$ and $z=$ (i) 1 mm ; (ii) 2 cm .
5. Find the incremental field $\Delta \overline{\mathrm{H}}_{2}$ at P_{2} caused by a 10 source at P_{1} of $\mathrm{I}_{1} \Delta \overline{\mathrm{~L}}_{1}=$
(a) $2 \pi \bar{a}_{z} \mu A . m$, given $P_{1}(4,0,0)$ and $\mathrm{P}_{2}(0,3,0)$;
(b) $2 \pi \overline{\mathrm{a}}_{\mathrm{z}} \mu \mathrm{A} . \mathrm{m}$, given $\mathrm{P}_{1}(4,-2,3)$ and $P_{2}(0,3,0)$;
6. Derive the point form of Ampere's Circuital Law. 10
7. Given $\overline{\mathrm{H}}=y^{2} z_{\overline{\mathrm{a}}} x+2(x+1) y z \overline{\mathrm{a}}_{y}-(x+1) z^{2} \overline{\mathrm{a}}_{z}$; find
(a) $\oint \overline{\mathrm{H}} \cdot \mathrm{d} \overline{\mathrm{L}}$ around the square path going from $\mathrm{P}(0,2,0)$ to $\mathrm{A}(0,2+\mathrm{b}, 0)$ to $\mathrm{B}(0,2+\mathrm{b}, \mathrm{b})$ to $C(0,2, b)$ to P.
(b) Evaluate $\oint \overline{\mathrm{H}} \cdot \mathrm{d} \overline{\mathrm{L}}$ for $\mathrm{b}=0.1$
(c) Find $\bar{\nabla} \times \bar{H}$.
8. Derive the magnetic boundary conditions. $\mathbf{1 0}$
9. (a) Derive wave equation for Electric Field 6 Intensity.
(b) Define Frequency, Wavelength, Velocity and intrinsic impedance.
10. Write short notes (any two) : $5 \times 2=10$
(a) Smith chart.
(b) SWR.
(c) Boundary conditions for perfect conductor.
