B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
December, 2013

BIEL-007 : SIGNALS AND SYSTEMS

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note: (i) Attempt any seven questions.
(ii) Use of Scientific calculator is allowed.

1. (a) Function $x(t)$ is shown in fig (i). Draw even 5 and odd parts of $x(t)$.

fig (i)
(b) What is the average power of square wave shown in fig (ii) ?

Fig (ii)
2. (a) Show that a system with excitation $x(t)$ and linear, time varient and non-causal.
(b) Test the following system for stability

$$
y[n]=\sum_{k=-\infty}^{n+1} x(k)
$$

3. For an LTI system with unit impulse response input, $x(t)=e^{-t} u(t)$.
4. Determine the homogeneous solution of second order equation given by $y[n]-y[n-1]-y[n-2]=0$, with the initial condition, $y[0]=0, y[1]=1$.
5. (a) Determine the Fourier transform of the signal $x(t)$ shown in fig (iii)

(b) Find the DTFT of the following finite duration sequence of Length L.

$$
x[n]=\left\{\begin{array}{cc}
\mathrm{A} & \text { for } 0 \leq n \leq \mathrm{L}-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

6. Obtain the trignometric Fourier series representation of the given periodic rectangular waveform in fig (iv)

7. The input voltage to an $R C$ circuit is given as $\mathbf{1 0}$
$x(t)=t e^{-t / R C} . u(t)$ and the impulse response of this
circuit is given as $h(t)=\frac{1}{R C} e^{-t / R C} . u(t)$.
Determine output $y(t)$.
8. Determine the inverse z-transform of $\mathbf{1 0}$ $S[z]=\frac{2}{2-3 z^{-1}+z^{-2}}$ when ROC : $|z|>1$.
9. Find the transfer function and impulse response $\mathbf{1 0}$ of a discrete time LTI system described by linear constant-coefficient difference equation given by

$$
y[n]=\frac{1}{2} y[n-1]+x[n]+\frac{1}{3} x[n-1]
$$

10. Write short notes on any two:
(a) Properties of Fourier series

$$
2 \times 5=10
$$

(b) Properties of Linear time invarient system
(c) Region of convergence for z-transform

