Nc	o. of Pri	nted Pages : 3	BIEL-002		
		B.TECH. IN ELECTRONICS AN	D		
C	COMM	IUNICATION ENGINEERING (BTECVI)		
hanana LC		Term-End Examination			
Ć		December, 2013			
and a second	BIEL-0	02 : ANALOG INTEGRATED CI DESIGN	RCUITS		
Tir	ne : 3 h	ours Maximun	Maximum Marks : 70		
No	ote: (i (i) Attempt any seven questions. i) Use of scientific calculator is permitt	ed.		
1.	(a)	Draw the circuit diagram of an inv amplifier using an OP-AMP. "A v ground exists at the input of the amp Explain.	erting 6 'irtual lifier".		
	(b)	Derive the formula for voltage gain inverting amplifier.	of an 4		
2.	(a)	Draw the circuit diagram of a diffe amplifier using OP-AMP and fin expression for the output voltage.	erence 4 nd an		
	(b)	Determine Vo of following Circuit. 0 + 18 V 5 V $1.5 k\Omega$	6 7 ₀		
		<u></u> 1 kΩ]		

BIEL-002

P.T.O.

3.	(a)	Explain how you can construct using an OP-AMP and other components.(i) A peak detector(ii) A half-wave rectifier	6
	(b)	Explain how square and triangular wave forms can be produced using OP-AMP.	4
4.	(a)	Draw the circuit of current to voltage converter using OP-AMP.	4
	(b)	What is a precision rectifier ? Why in a precision rectifier circuit an OP-AMP is connected before a diode ?	6
5.	(a)	Explain the operation of a zero-crossing detector	5
	(b)	Explain the features of an VCO.	5
6.	(a) (b)	Explain the functional diagram of 555 times. Explain an Astable multivibrator using 555 timer.	5 5
7.	(a)	Discuss how FM detection can be achieved using a PLL.	5
	(b)	Define the lock range and capture range of a PLL.	5
8.	(a)	Design a second-orders low pass active filter required to have a cut-off frequency of 5kHz.	6
	(b)	What is a state variable filter ? Explain its operation.	4

BIEL-002

2

- 9. (a) Design a butlerworth LP filter which has a 6 cut-off frequency of 1 kHz. The gain is required to drop at least-56 db at 10 kHz.
 - (b) Draw the circuit diagram of frequency to 4 voltage converter avel explain its operation.

10. Attempt *any two* of following : 2x5=10

- (a) Log/antilog amplifier
- (b) PLL-frequency synthesizer
- (c) Schmitt trigger.