B.TECH. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

∞ 0 0

Term-End Examination
December, 2013

BICS-018 : THEORY OF COMPUTATION

Time : $\mathbf{3}$ hours \quad Maximum Marks : $\mathbf{7 0}$
Note: Attempt any seven questions.
All questions carry equal marks.

1. (a) What is finite automata (FA) ? Construct a 5 nondeterministic finite automata (NDFA) accepting $\{a b, b a\}$ and use it to construct a deterministic automaton accepting the same set.
(b) Differentiate between moore and mealy 5 machine and design a moore and mealy machine for a binary input sequence. If it ends in 101 , output is ' A ', if it ends in ' 110^{\prime} output is ' B ', otherwise ' C '.
2. (a) Construct a DFA accepting all strings ω over $\{0,1\}$ such that the number of 1 's in ω is $3 \bmod 4$.
(b) Find the regular expression corresponding to the automaton given below :

3. (a) Construct a finite automaton equivalent to 5 the regular expression $\left(0+1(1+01)^{*} 00\right)^{*}$.
(b) What are the different normal forms of context free grammar ? Construct a grammar in Greibach Normal Form (GNF) equivalent to the grammar $S \rightarrow A A / a$, $\mathrm{A} \rightarrow \mathrm{SS} / \mathrm{b}$.
4. (a) What is pumping lemma for Regular sets ? Using pumping lemma show that the following sets are not regular
(i) $a^{n} b^{2 n} \mid n>0$
(ii) $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} 0<\mathrm{n}<\mathrm{m}$.
(b) Find a reduced grammar equivalent to the grammar $S \rightarrow a A a, A \rightarrow b B B, B \rightarrow a b$, $\mathrm{C} \rightarrow \mathrm{aB}$.
5. (a) What is push down automata ? Construct a push down automata (PDA) 'A' accepting the set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ with equal number of a's and b's.
> (b) Construct a PDA, ' A ' equivalent to the following context free grammar $S \rightarrow 0 S|1 S| 0$ and test whether 010^{4} accepted by PDA.
6. (a) Show that $\left\{a^{n} b^{n} \mid n \geq 1\right\} \cup\left\{a^{m} b^{2 m} \mid m \geq 1\right\}$ 5 cannot be accepted by a deterministic PDA.
(b) Differentiate between Turing Machine (TM) 5 and Push Down Automata (PDA). And design a TM to recognize all strings consisting of an even number of 1 's.
7. Design a Tuning Machine (TM) that accepts $\mathbf{1 0}$
$\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
8. How turing machine is different from Ram ? Explain and also discuss NP-complete and NP-hard problems.
9. Explain recursive and recursively enumerable languages with its application and also compare and contrast decidability and undecidability.
10. Write short notes on any two of the following : $5 \times 2=10$
(a) My hill-nerode theorem and its application
(b) Church's hypothesis
(c) Travelling salesman problem and Chromatic number problem
