BICS-014

B.Tech. COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

December, 2013

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Time : 3 Hours

1.2.2. 1.2.2. 1.2.2.2.

Maximum Marks : 70

Note : Attempt *any seven* questions. All questions carry *equal* marks.

1.	(a) (b)	Show that for any real constants a and b, where $a > 0$, $(n+a)b = \theta(n^b)$ Define binary search.	6 4
2.	(a) (b)	Define analysis of Merge Sort. Solve recurrence relation using Master's Method. (i) $T(n) = T(\sqrt{n}) + 1$	4 6
		(i) $T(n) = T(\sqrt{n}) + T$ (ii) $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$	
3.	(a)	Show that in the recurrence $T(n) = \max (T(q) + T(n - q - 1) + \theta(n))$ $0 \le q \le n - 1$ $T(n) = \Omega(n^2)$	5
	(b)	Write Knuth-Morris-Prott algorithm and also write down the algorithm for compute	5

prefix funtion(p).

BICS-014

4.	(a)	Explain dynamic programing procedure in detail	5
	(b)	Find an optimal parenthesization of a Matrix Chain product whose sequence of dimension is (5, 10, 3, 12, 5, 50, 6).	5
5.	(a)	Generalize Huffman's algorithm turnary code words (i.e, codewords using the symbol 0, 1 and 2), and prove that it yields optimal turnary codes.	5
	(b)	What are the elements of greedy strategy ? Define in detail.	5
6.	(a)	Suppose that the Graph $G=(V,E)$ is represented as an adjacency matrix. Give a simple implementation of prim's algorithm for this case that runs in $O(V^2)$ times.	5
	(b)	Define Set covering problem.	5
7.	(a) (b)	Define N.P complete problem. Show that the subset-sum problem is solvable in polynomial time if the target value t is expressed in unary.	5 5
8.	(a)	Show that the hamiltonian-path problem is NP-complete	5
	(b)	Suppose that a complete undirected graph $G = (V,E)$, with at least 3 vertices has a cost function C that satisfies the triangle in equality. Prove that $C(u,v) \ge 0$ for all μ , $v \in V$.	5
9.	(a) (b)	Define probablistic counting problem. Define Miller rabin test.	5 5
10.	Atter (a) (b) (c)	npt any two from the following : 2x5 Define randomized algorithm. Define fractional knapsock problem. Define Dixon's Integer factorization algorithm.	=10

BICS-014