B.Tech. COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
December, 2013

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Time : $\mathbf{3}$ Hours
Maximum Marks : 70
Note : Attempt any seven questions. All questions carry equal marks.

1. (a) Show that for any real constants a and b, where $a>0,(n+a) b=\theta\left(n^{b}\right)$
(b) Define binary search. 4
2. (a) Define analysis of Merge Sort.
(b) Solve recurrence relation using Master's 6
Method.
(i) $\quad T(n)=T(\sqrt{n})+1$
(ii) $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}$
3. (a) Show that in the recurrence
$\mathrm{T}(\mathrm{n})=\max (\mathrm{T}(\mathrm{q})+\mathrm{T}(\mathrm{n}-\mathrm{q}-1)+\theta(\mathrm{n})$ $0 \leq \mathrm{q} \leq \mathrm{n}-1$
$\mathrm{T}(\mathrm{n})=\Omega\left(\mathrm{n}^{2}\right)$
(b) Write Knuth-Morris-Prott algorithm and 5 also write down the algorithm for compute prefix funtion(p).
4. (a) Explain dynamic programing procedure in detail.
(b) Find an optimal parenthesization of a 5 Matrix Chain product whose sequence of dimension is $(5,10,3,12,5,50,6)$.
5. (a) Generalize Huffman's algorithm turnary

5 code words (i.e, codewords using the symbol 0, 1 and 2), and prove that it yields optimal turnary codes.
(b) What are the elements of greedy strategy ? Define in detail.
6. (a) Suppose that the Graph $G=(V, E)$ is 5 represented as an adjacency matrix. Give a simple implementation of prim's algorithm for this case that runs in $0\left(\mathrm{~V}^{2}\right)$ times.
(b) Define Set covering problem.

5
7. (a) Define N.P complete problem. 5
(b) Show that the subset-sum problem is 5 solvable in polynomial time if the target value t is expressed in unary.
8. (a) Show that the hamiltonian-path problem is

5 NP-complete.
(b) Suppose that a complete undirected graph 5 $G=(V, E)$, with at least 3 vertices has a cost function C that satisfies the triangle in equality. Prove that $C(u, v) \geqslant 0$ for all $\mu, v \in V$.
9. (a) Define probablistic counting problem. 5
(b) Define Miller rabin test. 5
10. Attempt any two from the following:
$2 \times 5=10$
(a) Define randomized algorithm.
(b) Define fractional knapsock problem.
(c) Define Dixon's Integer factorization algorithm.

