No. of Printed Pages : 2

BICS-009

B.TECH. COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

December, 2013

BICS-009 : LOGIC DESIGN

Time : 3 hours

00111

Maximum Marks : 70

- Note: (i) All questions carry equal marks.
 - (ii) Assume suitable missing data if any.
 - (iii) Attempt any seven questions.
- 1. (a) List non degenerate forms for two level 5 implementations. Explain AND-OR-INVERT implementation.
 - (b) Simplify the Boolean function : **5** $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ and don't cares: $d(w, x, y, z) = \Sigma(0, 2, 5)$
- What are the applications of Multiplexer? Design 10
 16 : 1 MUX using 4 : 1 MUX'S.
- (a) Differentiate in Encoder and Decoder. 5 Design 4 input priority encoder.
 - (b) Design 2 bit by 2 bit Binary Multiplier using 5
 Half adders and logic gates only.
- Implement and explain Master Slare JK flip-flop 10 using clocked RS flip-flop. Also design Toggle and Delay flip-flop using Master Slare JK flip-flop.

5.	(a)	Differentiate in shift register and counter. Explain 4 bit universal shift register using multiplexers	5
	(b)	Define the term Modulus. How you can change the modulus of the counter ?	5
6.	(a)	Explain the differences among a truth table, a characteristic table, state table and an excitation table	5
	(b)	Explain the methods to ensure a race free statement assignment.	5
7.	(a)	Design a 4 bit R-2R ladder type D/A converter and explain	5
	(b)	Describe linearity, accuracy and resolution for D/A converter.	5
8.	Draw the CMOS universal gate circuit and explain 10 its complete operation.		
9.	Explain TTL - 3 input NAND gate operation using 10 tristate logic and totem pole output stage with help of diagram.		
10.	Write (a) (b) (c)	e short note on any two : 5x2 Parity Generator and checker V-F converter TTL parameter and its open collector output configuration	2=10

BICS-009

_