B.Tech. Civil (Construction Management)

Term-End Examination

December, 2013

ET-540(B) : FLOW IN OPEN CHANNEL

Time : 3 hours
Maximum Marks : 70
Note: Answer any five questions. Give neat sketches wherever necessary. Use of non programmable scientific calculator is permitted.

1. (a) What are the main objectives of the computation methods of water surface profiles in an open channel flow ? Briefly discuss the most appropriate method for both prismatic and non prismatic channels of any shape.

$$
2+5=7
$$

(b) A trapezoidal channel has a bed width of 7 10 m , bed slope 0.0015 , side slope $z=1.5$. It carries a discharge of $10 \mathrm{~m}^{3} / \mathrm{s}$ and the Mannings Roughness ' n ' is 0.08 . A dam is to be constructed upon the channel so as to back up the water to a depth of 1.5 m immediately behind. Assuming the energy coefficient equal to 1.0 and the upstream end of the profile at a depth equal to 1% greater than normal depth compute the back water profile created by the dam.
2. (a) What is Hydraulic Jump phenomenon? What are the essential conditions for a Hydraulic Jump to occur in a Horizontal rectangular channel ? Express the same interms of relationship between initial and sequent depths.

$$
2+5=7
$$

(b) A rectangular channel has a width of $7 \mathrm{~m} \quad 7$ on a bed slope of 0.005 . The water flows with a depth equal 0.65 m at vena contracts when the discharge from a sluice gate is regulated at $100 \mathrm{~m}^{3} / \mathrm{s}$. The Mannings roughness factor ' n ' being 0.025 ; compute the flow profile.
3. (a) Prove the following equation for G.V.F. Assume the necessary data clearly mention the assumptions made.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{S}_{\mathrm{o}} \frac{\left[1-\left(\frac{y_{n}}{y}\right)^{10 / 3}\right]}{\left[1-\left(\frac{y_{c}}{y}\right)^{3}\right]}
$$

Where, terms have their standard meanings.
(b) Discuss the flow profiles with a neat and proper labelled sketch for following conditions :
(i) Profile in a Horizontal Channel
(ii) Profile in an Adverse Channel
4. (a) A hydraulic jump occurs in a rectangular channel section. The depths of flows after and before the jump are 0.3 and 0.7 m respectively. Calculate the critical depth and the loss of water power per unit width of the channel section for a discharge $\mathrm{q}=6.99 \mathrm{~m}^{3} / \mathrm{s}$.
(b) In a trapezoidal channel section having a bottom width of 5 m , longitudinal slope as 0.0015 discharge $10 \mathrm{~m}^{3} / \mathrm{s} ; \mathrm{n}=0.15$ and side slope $1.5: 1$; find the normal depth of flow? If the normal depth of flow has to be kept 1.0 m what changes would you suggest in the longitudinal normal slope S_{n} ?
5. (a) Draw the specific energy curve and properly lable the same. Prove the criteria for minimum specific energy is:
$3.5+3.5=7$

$$
F=\frac{V}{\sqrt{\left[g \frac{D \cos \theta}{\alpha}\right]}}
$$

(b) Draw the definition sketch of a Hydraulic jump in submerged flow conditions. Also, show that :
$3.5+3.5=7$

$$
\phi=\frac{y_{2}}{y_{1}}=\frac{1}{2}\left(\sqrt{1+8 \mathrm{Fr}_{1}^{2}}\right)-1
$$

Terms have commonly used meanings.
6. (a) Draw a dimensionless curve for determining the normal depth of flow with known section factors. Discuss the effect of changing side slope for a trapezoidal section.
$3.5+3.5=7$
(b) A parabolic trench has the top width of 15 m . Find out the section factor, hydraulic depth (D) and hydraulic radius (R) corresponding to a flow depth of 5 m for uniform flow conditions.
7. Write short notes on any four from the following : $4 \times 3.5=14$
(a) Standard step method
(b) Specific energy
(c) Hydraulic drop
(d) Reynolds Number
(e) Ganguillet - Kutter's Equation
(f) Uniform Flow

