B.TECH. CIVIL (WATER RESOURCES ENGINEERING)

Term-End Examination
December, 2013

ET-533(B) : OPEN CHANNEL FLOW

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All question carry equal marks. Give neat and levelled sketches. Use of scientific calculator is permitted.

1. (a) Write the applications of the principles of 4 open channel flow in detail.
(b) Define following geometrical parameters of 4 a channel :
(i) Top width
(ii) Wetted Area
(iii) Wetted Perimeter
(iv) Hydraulic Radius
(c) The discharge of water through a 6 rectangular channel of width 8 m , is $10 \mathrm{~m}^{3} / \mathrm{s}$ when depth of flow of water is
1.2 m . Calculate :
(i) Critical depth
(ii) Critical velocity
(iii) Minimum specific energy
2. (a) Write the difference between the following
(i) Prismatic and Non prismatic channels.
(ii) Natural and Artificial channel.
(b) Define the terms:

3
(i) Subcritical flow
(ii) Critical flow and
(iii) Super critical flow
(c) A 2 m wide rectangular channel has a specific energy of 1.50 m , when carrying a discharge of $5 \mathrm{~m}^{3} / \mathrm{s}$. Calculate alternate depth and corresponding Froude numbers.
3. (a) Discuss the salient features of the surface profile in detail. Draw different Gradually Varied flow profiles.
(b) What is back water curve? Draw the figure 6 for back water curve and afflux.
4. What are the methods of computation of water surface profile? Explain the Graphical Integration Method in detail with suitable sketches.
5. (a) Prove the Belanger momentum equation

$$
\frac{y_{2}}{y_{1}}=\frac{1}{2}\left(-1+\sqrt{1+8 \mathrm{~F}_{1}^{2}}\right)
$$

for hydraulic jump in horizontal rectangular channel.

(b) Classify the hydraulic jump basis of location of jump.

6. (a) Define Transition. What are the function8 of channel transitions ? Draw different channel transition.
(b) Give typical velocity distribution profile in 6 an open channel (prismatic) along a vertical and along a horizontal.
7. (a) Derive the condition $\frac{Q^{2}}{g}=\frac{A c^{3}}{T c}$
for maximum discharge.
(b) A trapezoidal channel is 11.0 m wide and has a side slope of 1.4 horizontal: 1 vertical. The channel is lined with smooth concrete of $n=0.012$. Find the bottom slope necessary to carry only $48 \mathrm{~m}^{3} / \mathrm{sec}$ of discharge at a depth of 3.0 m .
8. Write short notes on any four of the following :
(a) Hydraulic exponent
$4 \times 3.5=14$
(b) Specific energy curve
(c) Mean velocity of flow
(d) Major difference between open channel and a pipe flow
(e) Length of hydraulic jump
