Io. of Printed Pages : 3

B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2013

ET-532(A) : HYDROLOGY

ime : 3 hours

Maximum Marks : 70

ET-532(A)

Note : Solve any five questions. All questions carry equal marks. Neat sketches (well - labelled) be given.

•	(a)	Outline the main hydrological processes that contribute to surface water			
	(b)	If <i>n</i> denotes the number of gram molecules in volume <i>V</i> , prove :	4		
		$pV = \frac{M}{m}RT$, where the symbols have their			
		usual meaning.			
	(c)	Define relative humidity.	2		
	(d)	How does vapour pressure vary, over a water body, with temperature ?	2		
	(a)	What is to be understood by mesopause, and stratopause : give a sketch.	7		
	(b)	Explain :	7		
	(-)	(i) sensible heat :	,		
		(ii) scattering of solar radiation :			
		(iii) net radiation :			
		(iv) major pressure belts of our globe.			

ET-532(A)

P.T.O.

- 3. (a) Explain the use of *double mass curve*, vis-a-vis, the consistency of a given hydrological data at any observation station.
 - (b) What is understood by depth area duration analysis with respect to a station ?
 - (c) A data series for a given area is given below :

Stn	1	2	3	4	5	6	7
Rain fall (mm)	10.2	8.03	7.06	8.0	5.0	0	3.2
Thiessen Polygon	2.1	3.2	3.1	2.8	9.0	6.1	5.2
Area (km) ²							

Determine the average precipitation over the whole basin.

- **4.** With the help of sketches, explain the use of slope-area method for estimating flow in a stream.
- 5. (a) With respect to the hydrograph of a basin, as recorded at a given station, explain the typical characteristics when this is the result of a storm over the basin.
 - (b) Giving the sketch, of discuss the velocity area method of flow computation.
- **6.** Given a data sample of some hydrological event, a explain what is understood by :
 - (a) Binomial distribution
 - (b) Normal distribution
 - (c) Chi-sq distribution
 - (d) F distribution
 - (e) Coefficient of correlation

ET-532(A)

With regard to a water - bearing soil, outline the 14 following :

- (a) An aquifer and its types ;
- (b) specific yield ;
- (c) transmissivity and hydraulic resistance
- (d) leakage factor ;
- (e) anisotropic aquifer and its hydraulic conductivity.

Write short notes on **any four** of the following :

 $4x3^{1/2}=14$

- (a) Rational and cook's methods to find peak rate of runoff.
- (b) Dickens formula
- (c) Fuller's formula for estimating floods
- (d) Gumbell's Probability Method
- (e) Design flood