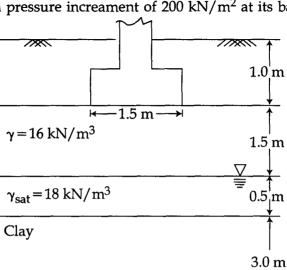
## B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

## Term-End Examination December, 2013

ET-501(A): SOIL MECHANICS

| Time: 3 hours |     | urs                                                                                                                                                                                                     | Maximum Marks : 70                   |  |
|---------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Not           |     | nswer <b>any five</b> questions<br>se of calculator is <b>perm</b> i                                                                                                                                    | s. Assume any missing data<br>itted. |  |
| 1.            | (a) | A 10 cm diameter and 30 cm long soil sample extracted from ground weighs 4.125kg. A moist specimen of the sample weighs 12.7g and after oven drying 9.2g. Specific gravity of solids is 2.65. Determine |                                      |  |
|               |     | (i) Total density,                                                                                                                                                                                      |                                      |  |
|               |     | (ii) Water content,                                                                                                                                                                                     |                                      |  |
|               |     | (iii) Void ratio,                                                                                                                                                                                       |                                      |  |
|               |     | (iv) Degree of satura                                                                                                                                                                                   | ation, and                           |  |
|               |     | (v) Dry density of t                                                                                                                                                                                    | he soil sample.                      |  |
|               | (b) | Discuss Relative Dens                                                                                                                                                                                   | ity of soil.                         |  |
| 2.            | (a) | What is particle size distribution curve? 7 What is its use in soil Engineering?                                                                                                                        |                                      |  |
|               | (b) | The following results were obtained from the laboratory. Classify the soil according to the Indian standard soil classification system: LL = 34% PL = 18% passing 75 micron size is 52.                 |                                      |  |


- 3. (a) What are different methods for determination of the coefficient of permeability in a laboratory? Discuss their limitations.
  - (b) A sample of clay has cross sectional area of 90 cm<sup>2</sup> and a length of 6 cm is subjected to falling head permeability test. The area of stand pipe is 0.65 cm<sup>2</sup> and during the test, head dropped from 65 cm to 42 cm in 80 minutes. Compute the coefficient of permeability.

7

- 4. (a) Describe standard proctor compaction and the modified proctor compaction.
  - (b) A sand deposit was compacted dry to an in-place void ratio of 0.45. For this sand  $e_{max} = 0.7$  and  $e_{min} = 0.3$ . Determine relative density and relative compaction of this sand deposit. Gs = 2.65
- 5. (a) What are the principles of drawing flow nets and draw flow net for the case of seepage below an impermeable wall.
  - (b) For the soil deposit shown in the figure, draw Total stress, pore water pressure and effective stress diagrams. The ground water level at Elevation 0.0m.

EL.0.0 m 
$$\frac{\nabla}{\equiv}$$
 GL  
 $\gamma_{\text{sat}} = 1.929/\text{cc Layer 1}$   
EL - 4.0 m  $\frac{\gamma_{\text{sat}}}{\gamma_{\text{sat}} = 2.19/\text{cc Layer 2}}$   
EL - 11.0 m

**6.** A footing has a size of 3.0m by 1.5m and it causes a pressure increament of 200 kN/m<sup>2</sup> at its base.



Determine the consolidation settlement of the middle of the clay layer. Assume 2:1 (V:H) pressure distribution and consider the variation of pressure across the depth of the clay layer.  $\gamma w = 10 \text{kN/m}^3$ .

 $e_0 = 0.8$ 

 $c_c = 0.3$ 

- 7. (a) Discuss different laboratory tests used for determining the shear strength parameters of a soil.
  - (b) What are the methods for improving the stability of slopes? Discuss briefly.

8. Write short notes on any four of the following.

(a) Liquefaction

 $\gamma = 15 \text{ kN/m}^3$ 

 $4x3\frac{1}{2}=14$ 

7

7

14

- (b) Critical void ratio
- (c) Zero air void line
- (d) Shrinkage limit
- (e) Activity of clays
- (f) Compression Index
- (g) Stability Number