B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2013

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

me : $\mathbf{3}$ hours
Maximum Marks : 70
ote : Attempt any five questions. All questions carry equal marks. Use of Scientific calculator is permitted.
(a) Find the roots of the equation

$$
x^{3}+6 x+20=0
$$

Given that, one root being $1+3 i$.
(b) Solve the set of simultaneous equations by Crouts method :

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=-4 \\
& 2 x_{1}-3 x_{2}+x_{3}=-1 \\
& 3 x_{1}-5 x_{2}+4 x_{3}=5
\end{aligned}
$$

(a) Using Newton-Raphson method, compute 7+7 the real root of the following equation $x e^{x}=1$ and correct to four decimal places.
(b) Find a root of the following equation $\cos x-1.3 x=0$
correct to three decimal places, which lies between 0 and 1, by using Bisection Method.
3. (a) Compute $f(78)$ by using Newton's forward interpolation formula from the given data.

x	80	85	90	95	100
$f(x)$	5026	5674	6362	7088	7854

(b) Use Gauss-Seidel Method to solve the following systems of equations :

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

4. (a) Find a real root of the following equation $x^{3}-5 x-7=0$ by using the Regula-Falsi method, correct to 4 decimal places.
(b) Use Runge-Kutta method to approximate y, when $x=0.1$ and $x=0.2$, given that $x=0$, when $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y$
5. (a) Write a FORTRAN program to calculate the sum of the series

Sum $=x+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+\ldots \ldots .$. upto 50 terms for $x=2, x=4$ and $x=6$.
(b) Write a FORTRAN program to calculate area of circle, rectangle or a triangle depending upon user's choice.
(a) Write a FORTRAN programme to tabulate $7+7$ the function

$$
f(x)=\frac{x^{2}+1.5 x+5}{x-3}
$$

for $x=-10$ to 10 ,
x should take values $-10,-8,-6, \ldots, 6,8,10$
(b) Write a FORTRAN programme to calculate and print the sums of even and odd integers of the first 500 natural numbers.
(a) Write a FORTRAN programme to input a $7+7$ number. If the number is even, print its square, otherwise print its cube.
(b) Write a pro FORTRAN programme to print FIBONACCI series, i.e. $0,1,1,2,3,5,8$,
(a) Write down the FORTRAN expression for $7+7$ the following :
(i) $\quad \mathrm{P}=\mathrm{e}^{x}+\tan x+\log x$
(ii) $\mathrm{Q}=\frac{x^{2}-2 x+3}{(x-2)(x-4)}$
(iii) $R=S^{3}+2 S^{2}+9 S+10$
(iv) $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
(v) $K \cdot E=\frac{1}{2} \mathrm{mv}^{2}$
(vi) $R=\frac{\left(\alpha+\beta^{2}+\alpha \beta\right)^{5}}{\sqrt{\alpha+\beta+1}}$
(vii) $\eta=\frac{E I}{E I+P_{0}+I^{2} R}$
(b) The Fermi-Dirac distribution for a normalized energy U is given by the formula

$$
\mathrm{FDD}=\frac{1}{\mathrm{e}^{\mathrm{u}}-1}
$$

Write a FORTRAN programme that will prepare a table of this function for U varying from 1.0 to 10.0 in steps of 0.05 .

