ET-201(B)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering)

Term-End Examination

December, 2013

ET-201(B) : ENGINEERING THERMODYNAMICS

Time : 3 hours

Maximum Marks : 70

00358

- **Note :** Answer **seven** questions in all . Question no 1 is **compulsory**. Use of Steam table and scientific calculator is **allowed**.
- Choose the correct answer from the given four alternatives for the following objective type questions: 10x1=10
 - (a) Torr is a unit of :

(i)	temperature	(ii)	pressure
(iii)	volume	(iv)	energy

(b) Which of the following is not an extensive property ?

(i) Volume	(ii) Pre	essure
------------	----------	--------

- (iii) Energy (iv) Entropy
- (c) A thermodynamic cycle is impossible if :

(i)
$$\phi \frac{dQ}{T} < 0$$
 (ii) $\phi \frac{dQ}{T} = 0$
(iii) $\phi \frac{dQ}{T} > 0$ (iv) $\phi dS > 0$

ET-201(B)

- (d) An iso-entropic process :
 - (i) is always reversible
 - (ii) Is always adiabatic
 - (iii) need not be adiabatic or reversible
 - (iv) is always frictionless.
- (e) In a refrigerator plant, if the condenser temperature increases, the power input to the compressor will :
 - (i) decrease
 - (ii) increase
 - (iii) remain the same
 - (iv) be unpredictable.
 - (f) Match List-I with List- II and select the answer from the code given below

	List -I		List - II
(E	quipment in		
а	refrigerator		(purpose)
	system)		
(A) Co	ompressure	(1)	Enthalpy remains constant
(B) Ev	aporator	(2)	Enthalpy increases
(C) Th	nrottle value	(3)	Enthalpy increases but
			pressure remains constant
(D) C	ondenser	(4)	Enthalpy decreases but
			pressure remains

constant.

Code :

(A)-(1), (B)-(2), (C)-(3), (D)-(4) (i) (ii) (A)-(4), (B)-(3), (C)-(2), (D)-(1) (A)-(2), (B)-(3), (C)-(1), (D)-(4) (iii) (A)-(3), (B)-(1), (C)-(4), (D)-(2) (iv)

ET-201(B)

(g) In a vapour compression system, the working fluid is superheated vapour at entrance to :

(i) evaporator (ii) condenser

- (iii) compressor (iv) expansion value(h) When a liquid boils at constant pressure, the following parameter increases :
 - (i) temperature
 - (ii) latent heat of vaporization
 - (iii) kinetic energy
 - (iv) entropy
- During a general polytropic expansion process characterised by pvⁿ=constant, the work done is equal to :

(i)
$$p_1v_1 - p_2v_2$$

(ii) $p_1v_1 \ln\left(\frac{v_2}{v_1}\right)$

(iii)
$$\frac{p_1 v_1 - p_2 v_2}{n-1}$$

(iv)
$$\frac{p_1v_1 - p_2v_2}{n+1}$$

(j) A mixture of gases expands from 0.03 m³ to 0.06 m³ at constant pressure of 1 MPa, and absorbs 84 kJ of heat during the process. The change in internal energy of the mixture is :

(i)	30 kJ	(ii)	54 kJ
(iii)	84 kJ	(iv)	114 kJ

- (a) Distinguish between the term 'change of state', 'path' and 'process'. Also explain a 'thermodynamic cycle'. 2x5=10
 - (b) A platinum resistance thermometer has a resistance of 2.8 ohm at 0°C and 3.8 ohm at 100°C. Calculate the temperature when the resistance indicated is 5.8 ohm.

ET-201(B)

- 3. (a) A mass of gas is compressed in a quasi static process from 80 kPa, 0.1m^3 to 0.4 MP_a , 0.03 m^3 . Assuming that the pressure and volume are related by $pv^n = \text{constant}$, find the work done by the gas system. 2x5=10
 - (b) If a gas of volume 6000 cm^3 , and at pressure of 100 kPa is compressed quasistatically according to PV^2 = constant until the volume becomes 2000 cm³, determine the final pressure and the work transfer.
- 4. (a) A stationary mass of gas is compressed without friction from an initial state of 0.3 m^3 and 0.105 MP_a to a final state of 0.15 m³ and 0.105 MP_a, the pressure remaining constant during the process. There is a transfer of 37.6 kJ of heat from the gas during the process. How much does the internal energy of the gas change ? 2x5=10
 - (b) A domestic refrigerator is loaded with food and the door closed. During a certain period the machine consumes 1KW of energy and the internal energy of the systems drops 5000 kJ. Find the net heat transfer for the System.
- 5. (a) In a cyclic process, heat transfers are +14.7 kJ, -25.2 kJ, -3.56 kJ, and +31.5 kJ. What is the net work for this cyclic process ? 2x5=10
 - (b) State and explain the Kelvin Planck statement of the second law of thermodynamics.
- 6. (a) Define the COP of a refrigerator. What is a heat pump ? How does it differ from a refrigerator ? 2x5=10
 - (b) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity.

ET-201(B)

P.T.O.

4

- 7. (a) A refrigeration plant for a food store operates as a reversed Carnot heat engine cycle. The store is to be maintained at a temperature of -5° C, and the heat transfer from the store to the cycle is at the rate of 5 KW. If heat is transferred from the cycle to the atmosphere at a temperature of 25°C, calculate the power required to drive the plant. 2x5=10
 - (b) A heat pump provides 3×10^4 kJ/h to maintain a dwelling at 23°C on a day when the outside temperature is 0°C. The power input to the heat pump is 4kW. Determine the COP of the heat pump and compare it with the COP of a reversible heat pump operating between the reservoirs at the same two temperatures.
- 8. A reversible power cycle is used to drive a reversible heat pump cycle. The power cycle takes in Q_1 heat units at T_1 and rejects Q_2 at T_2 . The heat pump abstracts Q_4 from the sink at T_4 and discharges Q_3 at T_3 . Prove that

$$\frac{Q_4}{Q_1} = \frac{T_4(T_1 - T_2)}{T_1(T_3 - T_4)}.$$

- 9. (a) Find the enthalpy, entropy, and volume of steam at 1.4 MP_a, 380°C. 2x5=10
 - (b) What do you understand by triple point ?
- 10. (a) What are the four basic components of a steam power plant ? Explain with the help of block diagram. 2x5=10
 - (b) What is the effect of reheat on
 - (i) the specific output,
 - (ii) the cycle efficiency, and
 - (iii) Steam rate, of a steam power plant?

ET-201(B)

5