B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering)
 Term-End Examination
 December, 2013
 00358
 ET-201(B) : ENGINEERING THERMODYNAMICS
 Time : $\mathbf{3}$ hours
 Maximum Marks : 70
 Note: Answer seven questions in all. Question no 1 is compulsory. Use of Steam table and scientific calculator is allowed.

1. Choose the correct answer from the given four alternatives for the following objective type questions:
$10 \times 1=10$
(a) Torr is a unit of :
(i) temperature
(ii) pressure
(iii) volume
(iv) energy
(b) Which of the following is not an extensive property ?
(i) Volume
(ii) Pressure
(iii) Energy
(iv) Entropy
(c) A thermodynamic cycle is impossible if :
(i) $\phi \frac{d Q}{T}<0$
(ii) $\quad \phi \frac{\mathrm{dQ}}{\mathrm{T}}=0$
(iii) $\phi \frac{d Q}{T}>0$
(iv) $\phi \mathrm{dS}>0$
(d) An iso-entropic process:
(i) is always reversible
(ii) Is always adiabatic
(iii) need not be adiabatic or reversible
(iv) is always frictionless.
(e) In a refrigerator plant, if the condenser temperature increases, the power input to the compressor will :
(i) decrease
(ii) increase
(iii) remain the same
(iv) be unpredictable.
(f) Match List-I with List- II and select the answer from the code given below

List -I
(Equipment in
arefrigerator system)
(A) Compressure
(1) Enthalpy remains constant
(B) Evaporator
(2) Enthalpy increases
(C) Throttle value
(3) Enthalpy increases but pressure remains constant
(D) Condenser
(4) Enthalpy decreases but pressure remains constant.

Code :

(i) $\quad(\mathrm{A})-(1),(\mathrm{B})-(2),(\mathrm{C})-(3),(\mathrm{D})-(4)$
(ii) (A)-(4), (B)-(3), (C)-(2), (D)-(1)
(iii) (A)-(2), (B)-(3), (C)-(1), (D)-(4)
(iv) (A)-(3), (B)-(1), (C)-(4), (D)-(2)
(g) In a vapour compression system, the working fluid is superheated vapour at entrance to :
(i) evaporator
(ii) condenser
(iii) compressor
(iv) expansion value
(h) When a liquid boils at constant pressure, the following parameter increases:
(i) temperature
(ii) latent heat of vaporization
(iii) kinetic energy
(iv) entropy
(i) During a general polytropic expansion process characterised by $\mathrm{pv}^{\mathrm{n}}=$ constant, the work done is equal to :
(i) $p_{1} v_{1}-p_{2} v_{2}$
(ii) $\mathrm{p}_{1} \mathrm{v}_{1} \ln \left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right)$
(iii) $\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}$
(iv) $\frac{p_{1} v_{1}-p_{2} v_{2}}{n+1}$
(j) A mixture of gases expands from $0.03 \mathrm{~m}^{3}$ to $0.06 \mathrm{~m}^{3}$ at constant pressure of 1 MPa , and absorbs 84 kJ of heat during the process. The change in internal energy of the mixture is :
(i) 30 kJ
(ii) 54 kJ
(iii) 84 kJ
(iv) 114 kJ
2. (a) Distinguish between the term 'change of state', 'path' and 'process'. Also explain a 'thermodynamic cycle'.
(b) A platinum resistance thermometer has a resistance of 2.8 ohm at $0^{\circ} \mathrm{C}$ and 3.8 ohm at $100^{\circ} \mathrm{C}$. Calculate the temperature when the resistance indicated is 5.8 ohm .
3. (a) A mass of gas is compressed in a quasi - static process from $80 \mathrm{kPa}, 0.1 \mathrm{~m}^{3}$ to $0.4 \mathrm{MP}_{\mathrm{a}}, 0.03 \mathrm{~m}^{3}$. Assuming that the pressure and volume are related by $\mathrm{pv}^{\mathrm{n}}=$ constant, find the work done by the gas system.
(b) If a gas of volume $6000 \mathrm{~cm}^{3}$, and at pressure of 100 kPa is compressed quasistatically according to $\mathrm{PV}^{2}=$ constant until the volume becomes $2000 \mathrm{~cm}^{3}$, determine the final pressure and the work transfer.
4. (a) A stationary mass of gas is compressed without friction from an initial state of 0.3 m^{3} and $0.105 \mathrm{MP}_{\mathrm{a}}$ to a final state of $0.15 \mathrm{~m}^{3}$ and $0.105 \mathrm{MP}_{\mathrm{a}^{\prime}}$, the pressure remaining constant during the process. There is a transfer of 37.6 kJ of heat from the gas during the process. How much does the internal energy of the gas change ? $2 \times 5=10$
(b) A domestic refrigerator is loaded with food and the door closed. During a certain period the machine consumes 1 KW of energy and the internal energy of the systems drops 5000 kJ . Find the net heat transfer for the System.
5. (a) In a cyclic process, heat transfers are $+14.7 \mathrm{~kJ},-25.2 \mathrm{~kJ},-3.56 \mathrm{~kJ}$, and +31.5 kJ . What is the net work for this cyclic process ?
(b) State and explain the Kelvin - Planck statement of the second law of thermodynamics.
6. (a) Define the COP of a refrigerator. What is a heat pump ? How does it differ from a refrigerator ? $2 \times 5=10$
(b) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity.
7. (a) A refrigeration plant for a food store operates as a reversed Carnot heat engine cycle. The store is to be maintained at a temperature of $-5^{\circ} \mathrm{C}$, and the heat transfer from the store to the cycle is at the rate of 5 $K W$. If heat is transferred from the cycle to the atmosphere at a temperature of $25^{\circ} \mathrm{C}$, calculate the power required to drive the plant.
(b) A heat pump provides $3 \times 10^{4} \mathrm{~kJ} / \mathrm{h}$ to maintain a dwelling at $23^{\circ} \mathrm{C}$ on a day when the outside temperature is $0^{\circ} \mathrm{C}$. The power input to the heat pump is 4 kW . Determine the COP of the heat pump and compare it with the COP of a reversible heat pump operating between the reservoirs at the same two temperatures.
8. A reversible power cycle is used to drive a $\mathbf{1 0}$ reversible heat pump cycle. The power cycle takes in Q_{1} heat units at T_{1} and rejects Q_{2} at T_{2}, The heat pump abstracts Q_{4} from the sink at T_{4} and discharges Q_{3} at T_{3}. Prove that

$$
\frac{\mathrm{Q}_{4}}{\mathrm{Q}_{1}}=\frac{\mathrm{T}_{4}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)} .
$$

9. (a) Find the enthalpy, entropy, and volume of steam at $1.4 \mathrm{MP}_{\mathrm{a}^{\prime}} 380^{\circ} \mathrm{C}$. $\mathbf{2 x 5}=\mathbf{1 0}$
(b) What do you understand by triple point?
10. (a) What are the four basic components of a steam power plant? Explain with the help of block diagram.
(b) What is the effect of reheat on
(i) the specific output,
(ii) the cycle efficiency, and
(iii) Steam rate, of a steam power plant?
