B.Tech. Civil (Construction Management) /
 B.Tech. Civil (Water Resources Engineering)

Term-End Examination
December, 201300560

ET-105(B) : CHEMISTRY

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any five questions from question numbered from 2 To 11. Use of calculator is allowed.

1. (a) In the titration between $\mathrm{k}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{FeSO}_{4} \quad 3$ in acid medium which element gets reduced :
(i) Sulphur
(ii) Chromium
(iii) Iron
(iv) Oxygen
(b) In a strong acidic solution, containing a 3 second group element and a fifth group element, $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is passed but no precipitate occurs, when this solution is diluted a yellow precipitate appears, the element is :
(i) Mercury
(ii) Chromium
(iii) Cadmium
(iv) Nickel
(c) The equivalent weight of I_{2} in the following reaction $\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$ is :
(i) 254
(ii) 127
(iii) 63.5
(iv) 31.6
(At.wt. of $\mathrm{I}=127$)
(d) The molecule, is called: 3
(i) 1,2-cyclobenzene
(ii) Cyclohexene
(iii) Cyclohexyne
(iv) Cyclohexane
(e) Which statement is correct for diamond and graphite :
(i) All bonds are equal in the both
(ii) Both are bad conductor of electricity
(iii) Both are used as lubricant
(iv) Carbon in graphite is $s p^{2}$ hybridized but in diamond carbon is sp^{3} hybridized.
(f) NaCl is having a FCC structure. If Na^{+}ions are present at octahedral voids then Cl^{-}ions will be present in a unit cell at :
(i) Tetrahedral voids
(ii) Lattice points
(iii) Face centered positions only
(iv) Corners only
(g) PVC (Polyvinyl chloride) is a polymer. Each mer contains :
(i) 1 Chlorine atom
(ii) 2 Chlorine atoms
(iii) 3 Chlorine atoms
(iv) 4 Chlorine atoms
(b) The miller indices of the shaded plane in a unit cell with reference to the given axes is \qquad .

2. (a) Which relates to photon both as wave motion and particle?

2, 2, 2, 2
(i) Interference
(ii) $\mathrm{E}=\mathrm{MC}^{2}$
(iii) Diffraction
(iv) $\mathrm{E}=\mathrm{h} v$
(b) Which of the following sets of quantum numbers represent an impossible arrangement
$\begin{array}{llll}\mathrm{n} & l & \mathrm{~m}_{l} & \mathrm{~m}_{\mathrm{s}}\end{array}$ $\mathrm{n} \quad l \quad \mathrm{~m}_{l} \quad \mathrm{~m}_{\mathrm{s}}$
(i) $3 \quad 2-2 \quad 1 / 2$
(ii) $\begin{array}{llll}3 & 2 & -3 & 1 / 2\end{array}$
$\begin{array}{llllllll}\text { (iii) } & \begin{array}{lllllll}4 & 0 & 0 & 1 / 2 & \text { (iv) } & 5 & 3\end{array} 0 & 1 / 2\end{array}$
(c) The triad of nuclei that is isotonic is:
(i) ${ }_{6}^{14} \mathrm{C},{ }_{7}^{15} \mathrm{~N},{ }_{9}^{17} \mathrm{~F}$
(ii) ${ }_{6}^{12} \mathrm{C},{ }_{7}^{14} \mathrm{~N},{ }_{9}^{19} \mathrm{~F}$
(iii) ${ }_{6}^{14} \mathrm{C},{ }_{7}^{14} \mathrm{~N},{ }_{9}^{17} \mathrm{~F}$
(iv) ${ }_{6}^{14} \mathrm{C},{ }_{7}^{14} \mathrm{~N},{ }_{9}^{19} \mathrm{~F}$
(d) How is soap prepared from natural fats/oil? Which Compound is obtained as by - product?
(h) During bessemerisation process impurities are :
(i) Oxidised
(ii) Reduced
(iii) Remains unchanged
(iv) Vaporised
(i) The rate constant k of a reaction has the unit $\mathrm{mol}-\mathrm{lit}^{-1} \mathrm{~min}^{-1}$. The order of reaction is :
(i) Zero order
(ii) First order
(iii) Second order
(iv) None of these
(j) Which of the following is tetrabasic acid ?
(i) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(ii) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
(iii) HPO_{3}
(iv) $\mathrm{H}_{3} \mathrm{PO}_{4}$
2. (a) Mention two main causes for non - ideal 4, 4 behaviour of gases.
(b) Indicate the state of hybridisation of the central atom in the following molecules :
(i) BCl_{2}
(ii) BF_{3}
(iii) NH_{3}
(iv) PCl_{5}
3. (a) The enolic form of acetone contains: 4, 4
(i) 9 sigma bonds, 1 pibond and 2 lone pairs
(ii) 8 sigma bonds, 2 pibonds and 2 lone pairs
(iii) 10 sigma bonds, 1 pibonds and 1 lone pair
(iv) 9 sigma bonds, 2 pibonds and 1 lone pair
(b) Human blood is isotonic with $0.9 \% \mathrm{NaCl}$ solution at $27^{\circ} \mathrm{C}$. What is the osmotic pressure ? $\left(\mathrm{R}=0.082 \frac{l-\mathrm{atm}}{\mathrm{deg}-\mathrm{mol}}\right)$
(At.wt.: $\mathrm{Na}=23, \mathrm{Cl}=35.5$)
(i) 8.6 atm
(ii) 3.8 atm
(iii) 15.2 atm
(iv) 7.6 atm
4. The equilibrium constant for the reaction : 8 $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ at 960 K is 1.873. The partial pressures of $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ and H_{2} in a reaction vessel are $0.3,0.25,0.2$ and 0.25 bar respectively. In which direction will the reaction proceed at 960 K and what is value of $\Delta \mathrm{g}$?

$$
\left(\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
$$

5. Give IUPAC names for the following :

2, 2, 2, 2
(a) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$ $\stackrel{1}{\mathrm{C}}$
(c)

(d)

6. (a) For which of the following equations will $\Delta \mathrm{H}$ be equal to $\Delta \mathrm{E}$?

$$
\begin{equation*}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{i}
\end{equation*}
$$

(ii) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
(iii) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(iv) $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
(b) The molar heat capacity of water in equilibrium with ice at constant pressure is \qquad .
7. 28 g of N_{2} gas at 300 K and 20 atm was allowed to expand isothermally against a constant external pressure of 1 atm , calculate $\Delta \mathrm{E}, \mathrm{q}$ and w for the gas $\left(\mathrm{R}=8.34 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
8. (a) How much maximum quantity of alum in 4, 4 grams can you make with $200 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}, 342 \mathrm{~g}$ $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and 24 moles of water?
(b) Which salt will remain in excess as unused and how much ? (At.wt.: $\mathrm{H}=1, \mathrm{O}=16, \mathrm{~K}=39, \mathrm{~S}=32, \mathrm{Al}=27$)
9. Calculate the solubility product of a saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water at 298 K , if the e.m.f of the concentration cell.
$\mathrm{Ag} \mid \mathrm{Ag}^{+}$(satd. $\left.\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)\left|\left|\mathrm{Ag}^{+}(0.1 \mathrm{M})\right| \mathrm{Ag}\right.$ is $\mathrm{E}=0.164$ volt at 298 K .
10. (a) A metal crystallises in two phases - FCC 4, 4 and BCC. The unit cell length are 3.5 A for FCC and $3.0 \dot{A}$ for BCC. Calculate the density $\mathrm{FCC} \mid \mathrm{BCC}$.

