B.Tech. Civil (Construction Management) /

- B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering)

Term-End Examination
December, 2013

ET-102 : MATHEMATICS - III

Time : 3 hours

Maximum Marks : 70
Note: Answer any ten questions. Use of calculator is allowed.

1. Test the series $x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots .$. for convergence for 7 all positive values of x.
2. Using Cauchy's Integral test, show that the series 7
$\sum_{2}^{\infty} \frac{1}{\mathrm{n}(\log \mathrm{n})^{p}}$ converges if $\mathrm{p}>1$ and diverges if $0<p \leq 1$.
3. Find half-range sine series for the function 7 $f(x)=x(\pi-x)$ for $0 \leq x \leq \pi$
4. Show that the series $1+x+\frac{x^{2}}{\underline{2}}+\ldots .$. converges 7 absolutely for all values of x.
5. Apply the Hurwitz-Routh criterion to determine 7 the stability of the system whose characteristic equation is given by $s^{4}+5 s^{2}+s+10=0$.
6. Find the characteristic function, transfer function, frequency response function and characteristic roots of the equation $\left(D^{3}+D^{2}+D+1\right) y=e^{2 x}$ Also find its particular solution.
7. (a) Evaluate $L\left[e^{-2 t}(3 \cos 6 t+5 \sin 6 t)\right], 3+4$ where L denotes Laplace Transform.
(b) Find $L^{-1}\left[\frac{e^{-2 s}}{(s-2)^{4}}\right]$.
8. Solve the differential equation 7 $\mathrm{y}^{\prime \prime}+2 \mathrm{y}^{\prime}+5 \mathrm{y}=\mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}$ given that $y(0)=0$, $y^{\prime}(0)=1$, using Laplace transform method.
9. Find the temperature $\mathrm{u}(x, \mathrm{t})$ in a bar of length x which is perfectly isolated, also at the ends $x=0$ and $x=\pi$, assuming that $\mathrm{c}=1$ and $\mathrm{u}(x, 0)=x$. (Formulate the problem and use method of separation of variables for finding the solution)
10. Solve the PDE

$$
\left(D^{2}-D D^{\prime}-2 D^{\prime 2}+2 D+2 D^{\prime}\right) Z=\sin (2 x+y)
$$

11. Find the solution near $x=0$ of the differential 7 equation $9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0$.
12. (a) Solve $x \log x \frac{d y}{d x}+y=2 \log x$
(b) Find the particular integral of $\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) y=x^{2}+\cos 2 x$.
13. Find the orthogonal trajectories of the family of 7 circle $x^{2}+(y-c)^{2}=c^{2}$, where c is a parameter.
14. Show that the function $v=-\frac{y}{\left(x^{2}+y^{2}\right)}$ is harmonic 7 and find its conjugate.
15. Find the bilinear transformation whose fixed 7 points are 2 and 3 .
16. Using Complex Variables, prove that 7 $\int_{0}^{\pi} \frac{3 \mathrm{~d} \theta}{9+\sin ^{2} \theta}=\frac{\pi}{\sqrt{10}}$
17. Determine the poles of the function 7 $f(z)=\frac{3 z+2}{z^{3}-6 z^{2}+11 z-6}$ and the residue at each pole Hence evaluate $\quad \int_{c:|z-i|=2} f(z)$
