ET-101(B)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) BTCLEVI/BTMEVI/BTELVI/BTECVI/BTCSVI

Term-End Examination

December, 2013

ET-101(B) : MATHEMATICS-II

Time : 3 hours

Maximum Marks : 70

Note : Attempt *any seven* questions. All questions carry *equal* marks. Use of calculator is *permitted*.

- 1. (a) Define random experiment, sample space event, simple event, mutually exclusive events. Give one example of each term.
 - (b) If the joint probability distribution of x and y is given by :

 $f(x, y) = kxye^{-(x^2 + y^2)} x \ge 0, y \ge 0$, find

- k. Test whether *x* and *y* are independent.
- **2.** (a) State and prove Bayes Theorem.
 - (b) A bag contains 4 red and 3 blue balls. Two draws of 2 balls each are made. Find the probability that the first draw gives 2 red balls and the second draw gives 2 blue balls, if :
 - (i) The balls are returned to the bag after the first draw.
 - (ii) The balls are not returned after the first draw.

ET-101(B)

- **3.** (a) Define cumulative distribution function. A fair coin is tossed two times. Let *x* be the number of heads that appear. Obtain and sketch the c.d.f. of the random variable *x*.
 - (b) Define binomial variate. Find its mean and variance.
- **4.** (a) Calculate the first four moments about the mean for the following f.d. and comment upon the nature of the f.d.

x	:	4	-3	-2	1	0	1	2	3	4
f	•	3	4	5	7	12	7	5	4	3

- (b) What are the properties of a good measure of dispersion? Explain these in context with S.D. Show that it is the least among the root mean square deviations.
- 5. (a) A machine automatically packs a chemical fertilizer in polythene packets. It is observed that 10% of the packets weigh less than 2.42 kg while 15% of the packets weigh more than 2.50 kg. Assuming that the weight of the packet is normally distributed, find the mean and variance of the packet.
 - (b) Show that in case of a normal distribution

 $\mu = 0$, and $\mu = \frac{(2r)! \sigma^{r}}{2^{r}r!}$, r = 0, 1, 2,

6. (a) Define exponential variate. Give one example. Describe its 'no memory property' ?

ET-101(B)

(b) The joint pdf of (x, y) is :

 $f(x, y) = \frac{1}{8} (x + y), \ 0 \le x \le 2,$ $0 \le y \le 2.$ Find the correlation coefficient 'p' between the varialbes (*x*, *y*).

7. (a) Define an unbiased estimator. Show that the sample mean \overline{x} is an unbiased estimator for μ , the population mean. Is \overline{x}^2 unbiased

estimator for μ^2 ? If not find its bias.

(b) For the population with p.d.f.

$$f(x; \alpha, \beta) = \frac{1}{\mathrm{T}\alpha \beta^{\alpha}} e^{-x_{\beta}} x^{\alpha-1}, x > 0 \text{ find}$$

moment estimators for the parameters α and β based on a random sample of size n.

- 8. (a) Construct a $100(1-\alpha)$ % confidence interval for parameter θ of exponential distribution having pdf $f(x; \theta) = \theta e^{-\theta x}$, x > 0 based on one observation from the distribution
 - (b) Explain the following :
 - (i) Type I and Type II errors
 - (ii) Level of significance and power of a test.
- **9.** (a) Following are the scores of two players in 10 successive games played by each of the player :

Player I :	13	15	7	15	5	12	9	3	20	11
Player I :	12,	7	2	8	6	9	5	7	6	8

Is Player II more consistent in scoring than I ? Use $\alpha = 0.05$.

ET-101(B)

P.T.O.

(b) The following table gives the sample data on the number of defective casting produced by five different moulds :

Moulds	:	Ι	II	III	IV	V
Defective Castings	:	14	33	21	17	25
Sample Size	:	100	200	180	120	150

On the basis of this data can we say that the proportion of defectives is same for different moulds ? Use $\alpha = 0.05$