B.Tech. Civil (Construction Management)/
 B.Tech. Civil (Water Resources Engineering)
 B.Tech. (Aerospace Engineering)
 BTCLEVI/BIMEVI/BTELVI/BTECVI/BTCSVI

Term-End Examination
December, 2013

ET-101(A) : MATHEMATICS-I

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note: All questions are compulsory.
Use of scientific calculator is permitted.

1. Answer any five of the following :
$5 \times 4=20$
(a) Examine the differentiability of the function.

$$
\mathrm{f}(x)=\left\{\begin{array}{cc}
x, & -\infty<x<0 \\
1, & 0 \leq x<2 \\
3-x & 2 \leq x
\end{array}\right.
$$

Also draw its graph.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at $\mathrm{t}=\pi / 4$ for the function
$x=\mathrm{a} \operatorname{cost}, y=\mathrm{a}$ sint.
(c) Expand the $x^{5}-3 x^{4}+2 x^{3}-x^{2}+1$ in powers of $(x-2)$ using Taylor's Theorem.
(d) Find the angles of intersection of $x y=10$ and $x^{2}+y^{2}=29$.
(e) Find the maximum and minimum of $\mathrm{f}(x)=\sin x(1+\cos x)$.
(f) Show that $\lim _{x \rightarrow \infty}\left(x^{2}+1\right)^{1 / l \mathrm{n}^{x}}=\mathrm{e}^{2}$.
(g) Use the differential to estimate $\sqrt{27} \sqrt[3]{1021}$
(h) If $\mathrm{u}=\mathrm{f}\left(\frac{x}{z}, \frac{y}{z}\right)$, prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial v}{\partial z}=0
$$

(i) If $\mathrm{u}=x+y+z, y+z=\mathbf{u v}, z=\mathrm{uvw}$ find

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}
$$

2. Answer any four of the following :
(a) Find the area enclosed by the cardiod $r=a(1-\cos \theta)$.
(b) Find the area of the astroid $x=\mathrm{a} \cos ^{3} \mathrm{t}$, $y=\operatorname{bsin}^{3} \mathrm{t}, 0 \leq \mathrm{t} \leq 2 \pi$.
(c) Use the trapezoidal rule with six subdivisions to evaluate

$$
\int_{0}^{\pi} \sqrt{\cos x} d x
$$

(d) Find the perimeter of the loop of the curve $\mathrm{r}=\mathrm{a}\left(\theta^{2}-1\right)$.
(e) Find the volume of the right circular cone of height 5 and radius of the circular base 2.
(f) Find the surface area of the solid generated by revolving the cycloid $x=a(\theta-\sin \theta)$, $y=a(1-\cos \theta)$ about the line $y=0$.
3. Answer any four of the following : $4 \times 4=16$
(a) Find the directional derivative of $x^{2}+y^{2}+4 x y z$ at $(1,-2,2)$ in the direction of $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$.
(b) Define curl of a vector function. Give its physical interpretation. If

$$
\overrightarrow{\mathrm{F}}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right), \text { then what is }
$$

$$
\nabla \overrightarrow{\mathrm{F}} ?
$$

(c) Evaluate $\int_{\mathrm{c}}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{ds}$, where c is
the arc of circular helix

$$
\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}+3 t \hat{k}
$$

(d) Evaluate $\phi\left[\left(x^{2}-2 x y\right) \mathrm{d} x+\left(x^{2} y+3\right) \mathrm{d} y\right]$ around the boundary C of the region $y^{2}=8 x, x=2$.
(e) State Stoke's Theorem. Derive Green's Theorem in the plane as a special case of Stoke's Theorem.
(f) Verify divergence theorem for the sphere

$$
x^{2}+y^{2}+z^{2}=\mathrm{a}^{2} \text { if } \overrightarrow{\mathrm{F}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

4. Answer any six of the following.
(a) Find an orthogonal basis of R^{4} containing $(1,-2,1,3)$ and $(2,1,-3,1)$.
(b) Check whether the transformation $\mathrm{T}(x, y, z)=(x, y, 4 z)$ is invertible? If so, find T^{-1}.
(c) Define rank of a matrix. Let A be a 3×4 matrix such that,

$$
\mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

What can you say about the rank of A ?
(d) Determine the values of a for which the following system of linear equations has
(i) a unique solution
(ii) infinite number of solutions.

$$
\begin{aligned}
& x+y+z=2, \quad x+2 y+z=-2, \\
& x+y+(a-5) z=a-4 .
\end{aligned}
$$

(e) Define eigen value problem of a matrix. Find the eigen values of the matrix $\left[\begin{array}{ll}1 & i \\ 1 & 1\end{array}\right]$
(f) Show that a matrix is singular if and only if one of its eigen values is zero.
(g) Verify Caley - Hamilton Theorem in case of the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 2 & 3 \\ 1 & 2 & 5\end{array}\right]$
(h) Compute e^{A} where $A=\left[\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right]$.

