B.TECH. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

December, 2013

BICEE-021 : COMPUTATIONAL METHODS IN STRUCTURAL ENGINEERING

Time : 3 hours

Maximum Marks : 70

Note: (i) Answer any five questions.
(ii) All questions carry equal marks.
(iii) Use of scientific calculator is permitted.

1. Locate the stationary points of $f(x)$ and find out if $\mathbf{1 4}$ the function is convex, concave or neither at the points of optima based on testing rules.

$$
f(x)=\frac{2 x_{1}^{3}}{3}-2 x_{1} x_{2}-5 x_{1}+2 x_{2}^{2}+4 x_{2}+5
$$

2. Minimize $\mathrm{f}=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}$ subject to the $\mathbf{1 4}$ constraints
$\mathrm{g}_{1}=x_{1}-x_{2}-2 x_{3}<12$
$\mathrm{g}_{2}=x_{1}+2 x_{2}-3 x_{3} \leq 8$
using KUHN-TUCKER conditions
3. Transform the general form of a linear 14 programming problem given below to its standard form
Minimize $Z=-3 x_{1}-5 x_{2}$
subject to $2 x_{1}-3 x_{2} \leq 15$
$x_{1}+x_{2} \leq 3$
$4 x_{1}+x_{2} \geqslant 2$
$x_{1} \geqslant 0$
x_{2} unrestricted
4. Discuss in detail the procedure for solving the integer linear programming.
5. (a) Discuss the convergence requirements for 7 solving any problem by finite element method.
(b) Briefly summarize the steps for solving any 7 problem by FEM analysis.
6. Solve the following system of equations by $\mathbf{1 4}$ CHOLESKEY'S method.

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}-x_{3}=2 \\
& 2 x_{1}+4 x_{2}+2 x_{3}=1 \\
& -x_{1}+2 x_{2}+4 x_{3}=2
\end{aligned}
$$

7. Analyse the portal frame shown in fig by force $\mathbf{1 4}$ method.

