-	B.TECH. CIVIL ENGINEERING
(BTCLEVI)	
0	Term-End Examination

December, 2013

BICEE-017 : ADVANCED STRUCTURAL ANALYSIS

Time : 3 hours
Maximum Marks : 70

Note: Attempt any five questions. Assume any missing data suitably.

1. Analyse the frame shown in fig. 1 by cantilever $\mathbf{1 4}$ method. Take cross-sectional area of all columns as the same.

Fig. 1
2. Develop the stiffness matrix of a generalized beam A B of span L as shown in Fig. (2)

Fig. 2
3. Analyse the portal frame shown in Fig. 3 by 14 flexibility matrix method. If the supports D settles to right by $\frac{20}{\mathrm{EI}}$ and downward by $\frac{50}{\mathrm{EI}}$ in $\mathrm{t}-\mathrm{m}$.

4. Analyse the continuous beam shown in Fig. 4. The downward settlement of supports B and C in $\mathrm{t}-\mathrm{m}$ units are $\frac{200}{\mathrm{EI}}$ and $\frac{100}{\mathrm{EI}}$ respectively

5. (a) Analyse the pin jointed plane frame by flexibility matrix method. Take flexibility of each member as $0.025 \mathrm{~cm} / \mathrm{t}$ shown in fig. 5 .
(b) If member $L_{1} V_{2}$ undergoes a rise of temp. by $32^{\circ} \mathrm{C}$, determine the forces in the member of the truss due to rise of temp. only. $\alpha=11.0 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$.

Fig. 5
6. Analyse the portal frame shown in fig: 6 by direct stiffness method neglecting axial deformations.
Take
$\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=300 \times 10^{-6} \mathrm{~m}^{4}$,
$\mathrm{A}=100 \times 10^{-4} \mathrm{~m}^{2}$.

7. (a) Discuss the step by step procedure of analysing a problem by finite element/ Analysis package.
(b) Develop the flexibility and stiffness for the beam shown in fig. 7 with reference to given coordinates and verify that two matrices are reciprocal of each other.

Fig. 7

