B. Tech. (Civil Engineering) BTCLEVI

Term-End Examination
December, 2013

BICE-022 : BACHELOR OF TECHNOLOGY (CE)

Time : 3 Hours
Maximum Marks : 70
Note: (i) All answers are to be written in English only.
(ii) Attempt any seven questions.
(iii) Non programmable calculators are allowed.

1. (a) Using Newton's Raphson method, find the 5 real root of $x \cdot \log _{10} x=1.2$ correct to the five decimal places.
(b) Explain the method of false position of 5 finding the real root of equation $f(x)=0$.
2. (a) Develope a computer algorithm for finding 5 roots of $\mathrm{f}(x)=0$, using Newton-Raphson method.
(b) Explain determination of eigen values and 5 eigen vector's by power method.
3. Solve $10 x-7 y+3 z+5 u=6,-6 x+8 y-z-4 u=5 \quad 10$
$3 x+y+4 z+11 u=2,5 x-9 y-2 z+4 u=7$ by
using Gauss elimination method.
4. (a) Explain Lagrange's interpolation method 5 for any function $y=f(x)$
(b) The following values of x and y are given: 5
$x: \begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
$y: \begin{array}{llll}1 & 2 & 5 & 11\end{array}$
Find the cubic splines and evaluate: $y(1.5)$ and $y(3)$.
5. Evaluate : $\int_{0}^{6} \frac{\mathrm{~d} x}{1+x^{2}}$ by using
(a) Trapezoidal rule
(b) Simpson's $1 / 3$ rule.
(c) Simpson's 3/8 rule.
6. (a) Explain maxima and minima of a tabulated function.
(b) What is numerical integration? Explain by 5 means of diagram.
7. (a) Find by Taylor's series method, the values 5 of y at $x=0.1$ and $x=0.2$ to five places of decimals from $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} y-1, y(0)=1$.
(b) Using Euler's method, find an approximate value of y corresponding to $x=1$, given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y \text { and } y=1, \text { when } x=0
$$

8. The manufacturer produces two types of models M_{1} and M_{2}. Each M_{1} model requires 4 hours of grinding and 2 hours of polishing, whereas each M_{2} model requires 2 hours of grinding and 5 hours of polishing. Each grinder work for 40 hours a week and each polisher works for 60 hours of a week. Profit on an M_{1} model is Rs. 3 and on an M_{2} model is Rs.4. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models so that he may make the maximum profit in a week.
9. Explain Fibonacci search method. 10
10. Explain Unimodal function of one dimensional 10 minimization.
