BICE-022

		B. Tech. (Civil Engineering) BTCLEVI		
0	Term-End Examination			
 December, 2013 BICE-022 : BACHELOR OF TECHNOLOGY (CE) 				
				Time : 3 Hours
Note : (i) (ii) (iii)		 All answers are to be written in English (Attempt any seven questions. Non programmable calculators are allow 	All answers are to be written in English only. Attempt any seven questions. Non programmable calculators are allowed.	
1.	(a)	Using Newton's Raphson method, find the real root of $x.\log_{10}x = 1.2$ correct to the five decimal places	5	
	(b)	Explain the method of false position of finding the real root of equation $f(x) = 0$.	5	
2.	(a)	Develope a computer algorithm for finding roots of $f(x) = 0$, using Newton-Raphson	5	
	(b)	method. Explain determination of eigen values and eigen vector's by power method.	5	
3.	Solv 3x + usin	e $10x - 7y + 3z + 5u = 6$, $-6x + 8y - z - 4u = 5$ 10 y + 4z + 11u = 2, $5x - 9y - 2z + 4u = 7$ by g Gauss elimination method.		
4.	(a)	Explain Lagrange's interpolation method for any function $w = f(x)$	5	
	(b)	The following values of x and y are given : x : 1 2 3 4 y : 1 2 5 11 Find the cubic splines and evaluate : y(1.5) and $y(3)$.	5	

- 5. Evaluate : $\int_0^6 \frac{dx}{1+x^2}$ by using
 - (a) Trapezoidal rule
 - (b) Simpson's 1/3 rule.
 - (c) Simpson's 3/8 rule.
- 6. (a) Explain maxima and minima of a tabulated 5 function.
 - (b) What is numerical integration ? Explain by 5 means of diagram.

10

10

7. (a) Find by Taylor's series method, the values 5 of y at x = 0.1 and x = 0.2 to five places of

decimals from
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2y - 1$$
, $y(0) = 1$.

- (b) Using Euler's method, find an approximate 5 value of *y* corresponding to x = 1, given that $\frac{dy}{dx} = x + y$ and y = 1, when x = 0.
- 8. The manufacturer produces two types of models M_1 and M_2 . Each M_1 model requires 4 hours of grinding and 2 hours of polishing, whereas each M_2 model requires 2 hours of grinding and 5 hours of polishing. Each grinder work for 40 hours a week and each polisher works for 60 hours of a week. Profit on an M_1 model is Rs. 3 and on an M_2 model is Rs.4. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models so that he may make the maximum profit in a week.
- 9. Explain Fibonacci search method.
- **10.** Explain Unimodal function of one dimensional **10** minimization.

BICE-022

2