No. of Printed Pages : 2

BASE-003

B.Tech. AEROSPACE

Term-End Examination

December, 2013

BASE-003 : HIGH SPEED AERODYNAMICS

Time : 3 hours

JU 04

Maximum Marks : 70

Note :	(i)	Answer any seven questions.
	(ii)	All questions carry equal marks.
	(iii)	Use of scientific calculator is <i>permitted</i> .

- Write a brief note on the reference temperature 10 method and entropy layer effects on aerodynamics heating.
- Explain the linearized theory for subsonic 10 compressible flow about a thin wing at small angle of attack.
- Discuss the performances of nozzles under 10 various back pressures.
- 4. (a) A supersonic flow with $M_1=1.5$, 7 $P_1=10^5$ N/m² and $T_1=288$ K is expanded around a sharp corner through a deflection angle of 15°. Calculate M_2 , P_2 , T_2 , Po_2 and To_2 .

BASE-003

	(b)	Distinguish between Expansion Waves and Shock Waves.	3	
5.	(a)	Derive the compressible flow Bernoulli's equation from one dimensional Euler's equation.	7	
	(b)	Define compressibility of a gas.	3	
6.	Derive the Prandtl - Glavert relationship for two dimensional subsonic flow.			
7.	Explain in detail shock polar with neat sketches.			
8.	Write a brief note on "supersonic flows" with neat sketches.			
9.	Write a brief note on "Adiabatic steady state flow equations".			