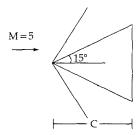
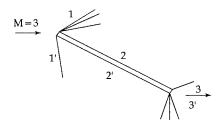
B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination December, 2013

BAS-015: AERODYNAMICS - II


Time	: 3 На	nurs Maximum Marks : 70
Note	qu	nestion No. one is compulsory . Attempt any six estion from the remaining questions q. 2 to q. 9 . Use Gas Table is permitted .
1.	Fill in	the blank : 2x5=10
	(a)	Down ward component of velocity in the vicnity of wing is known as
	(b)	The combination of bound vortex and trailing vortex is known as
	(c)	Reflected shock wave is than the incident shock.
	(d)	Flow behind the oblique shock wave is
	(e)	Ratio of displacement thickness to momentum thickness is known as
2.	State	Biot-savart Law and Prove that Downwash

is constant for elliptical lift distribution.


4+6=10

- 3. (a) Consider a finite wing with an aspect ratio of 8 and a taper ratio of 0.8. The airfoil section is thin and symmetric. Calculate the lift and induced drag coefficient when it is at angle of attack of 5° assume $\delta = \tau = 0.055$
 - (b) Derive an expression for speed of sound when sound wave is propagating in a gas across the normal shock wave.

 5+5=10
- 4. (a) A De-Laval nozzle has to be designed for an exit Mach No of 1.5 with exit diameter of 200mm. Find ratio of throat area/exit area. The reservoir conditions are given as P₀=1atm, T₀=20°C. Find also the maximum flow rate through the nozzle. 5+5=10
 - (b) Consider a normal shock in air where the upstream flow properties are U_1 =68m/s, T_1 =280°K and P_1 = 1atm. Calculate velocity, temperature and pressure downstream of the shock.
- 5. Explain shock polar for oblique shock wave with suitable sketch.
- 6. Consider a wedge with 15° half angle in a Mach 5 flow which is given below. Calculate the drag coefficient for the wedge.

- 7. (a) Explain with neat sketch: shock wave 5 interaction 8 reflection.
 - (b) For the flat plate which is given below, calculate the flow Mach No. across all waves, assuming slip stream deflection to be negligible.

- 8. Explain the phenomena of flow separation over the flate surface and also justify why golf balls are manufactured with dimpled surface.
- 9. The velocity distribution in the boundary layer of a flat plate is prescribed by the relation. 2.5x4=10

$$\frac{u}{U_0} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$$

Find the following:

- (a) Displacement thickness
- (b) Momentum thickness
- (c) Energy thickness
- (d) Shape factor