B. TECH. (AEROSPACE ENGINEERING)
(BTAE)
Term-End Examination
December, 2013

BAS-014 : AIRCRAFT STRUCTURES

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note: (i) Answer any five questions.
(ii) All questions carry equal marks.
(iii) Use of non-programmable calculators is permitted.

1. Explain the following briefly:

14
(a) Shear centre
(b) Principle of superposition
(c) Endurance Limit
(d) Poisson ratio
(e) Slenderness ratio
(f) Young's modulus
(g) Factor of Safety
2. (a) Derive the expression $\frac{T}{J}=\frac{\tau_{\max }}{R}=\frac{G \theta}{L}$ for a 10 circular shaft when subjected to a Torque.
(b) Find the maximum Torque that can be safely transmitted by a shaft of 400 mm diameter, if the shear stress is not to exceed $50 \mathrm{~N} / \mathrm{mm}^{2}$.
3. (a) Explain the Flight Envelope with the help of $\mathrm{V}-\mathrm{N}$ diagram considering specific reference to Positive and Negative Load Factors.
(b) Explain the term, corner velocity and its significance.
4. Find the deflection at ' C ' using strain energy 14 principle. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and cross - sectional area of members $A C$ and $B C$ as $800 \mathrm{~mm}^{2}$ each and that of AB as $1000 \mathrm{~mm}^{2}$.

5. For a beam shown below 14

Find
(a) Slope at C, A and E
(b) Deflections at C, D and E

Given :
$\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{I}=2 \times 10^{9} \mathrm{~mm}^{4}$
6. For a composite shaft shown below

Find
(a) Resisting Torques at fixed ends.
(b) Twist in each section.

Given :
Section A : Steel $G=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ diameter 40 mm

Section B : Aluminum $G=4 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ diameter 60 mm .
7. A solid shaft of diameter ' D ' and length ' L ' is to be replaced by a hollow shaft of outer diameter ' D ' and of inner diameter ' d ' and of length equal to that of the solid shaft. If $G_{\text {hollow }}=1-5 G_{\text {solid }}$ estimate percentage saving in material. Repeat the calculations if $G_{\text {hollow }}=G_{\text {solid }}$.
8. A spherical vessel with 6 m diameter, contains a corrosive gas at a pressure of $1.4 \mathrm{MN} / \mathrm{m}^{2}$. The vessel can withstand a maximum stress of $85 \mathrm{MN} / \mathrm{m}^{2}$. Due to corrosion the metal of wall is eroded at a rate of 0.3 mm per year. If the initial thickness of wall is 25 mm , find the life of the vessel.

