B. TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination December, 2013

BAS-014 : AIRCRAFT STRUCTURES

Time	: 3 ho	ours	Maximum Marks : 70
Note	: (i) (ii (ii) Answer any five questions. i) All questions carry equal m ii) Use of non-programmable ca	arks. Iculators is permitted .
1.	Expl (a) (b) (c) (d) (e) (f)	ain the following briefly : Shear centre Principle of superposition Endurance Limit Poisson ratio Slenderness ratio Young's modulus	14
2.	(g) (a) (b)	Derive the expression $\frac{T}{J}$ = circular shaft when subjected Find the maximum Torque the transmitted by a shaft of 400 if the shear stress is r 50 N/mm ² .	$\frac{\tau_{\text{max}}}{R} = \frac{G\theta}{L} \text{ for a } 10$ ed to a Torque. hat can be safely 4 0 mm diameter, not to exceed

BAS-014

- (a) Explain the Flight Envelope with the help 10 of V-N diagram considering specific reference to Positive and Negative Load Factors.
 - (b) Explain the term, corner velocity and its **4** significance.
- 4. Find the deflection at 'C' using strain energy 14 principle . Take $E = 2 \times 10^5 \text{ N/mm}^2$ and cross sectional area of members AC and BC as 800 mm² each and that of AB as 1000 mm².

5. For a beam shown below 14 $C \xrightarrow{10 \text{ kN}} 20 \text{ kN} - \text{m} 15 \text{ kN/m} \\ \overrightarrow{D E} 3 \text{ m} 3 \text{ m} 3 \text{ m} B$ Find (a) Slope at C, A and E (b) Deflections at C, D and E Given : $E = 2 \times 10^5 \text{ N/mm}^2$

$$I = 2 \times 10^9 \text{ mm}^4$$

BAS-014

2

Find

(a) Resisting Torques at fixed ends.

(b) Twist in each section.

Given :

Section A : Steel $G = 8 \times 10^4 \text{ N/mm}^2$ diameter 40 mm

Section B : Aluminum $G = 4 \times 10^4 \text{ N/mm}^2$ diameter 60 mm.

- 7. A solid shaft of diameter 'D' and length 'L' is to **14** be replaced by a hollow shaft of outer diameter 'D' and of inner diameter 'd' and of length equal to that of the solid shaft. If $G_{hollow} = 1-5 G_{solid'}$ estimate percentage saving in material. Repeat the calculations if $G_{hollow} = G_{solid}$.
- 8. A spherical vessel with 6m diameter, contains a 14 corrosive gas at a pressure of 1.4 MN/m². The vessel can withstand a maximum stress of 85 MN/m². Due to corrosion the metal of wall is eroded at a rate of 0.3 mm per year. If the initial thickness of wall is 25 mm, find the life of the vessel.

3