B. TECH. (AEROSPACE ENGINEERING)
 (BTAE)
 Term-End Examination

December, 2013

BAS-009 : INTRODUCTION TO AERONAUTICS

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Define the following terms: $\mathbf{1 0}$
(a) Angle of Attack
(b) Attitude of the Aircraft
(c) Stall
(d) Absolute ceiling
(e) Corner velocity
2. (a) Define pitch, roll and yaw of an aircraft. 5

Show with a proper sketch in Cartesian co-ordinate system
(b) List down the various parts of an aircraft and describe them in brief.
3. (a) "Induced drag is a function of lift". 5 Elaborate on the above statement. Show the efffect of induced drag on an airfoil.
(b) What is wake drag? Explain with a suitable sketch.
4. (a) What are flaps? Describe any two types of 5 flaps.
(b) Show that the relationship between velocity at minimum drag and velocity at minimum
power is $V_{\text {Pmin }}=\left(\frac{1}{3}\right)^{\frac{1}{4}} V_{\text {Dmin }}$.
5. Explain the following in brief :
(a) TAS
(b) Static Margin
(c) Mach No.
(d) Advance Ratio
(e) Aspect Ratio
6. (a) Consider a straight wing of aspect ratio 6 with a NACA 2412 airfoil. Assuming low speed flow, calculate the lift co-efficient at an angle of attack of 6°. For this wing, the span effectiveness factor $\mathrm{e}_{1}=0.95$,

$$
\mathrm{C}_{\mathrm{L}_{\alpha_{O}}}=0.105 / \mathrm{deg}, \mathrm{C}_{\mathrm{L}_{\mathrm{O}}}=-2.2^{\circ}
$$

(b) What is the lift co-efficient for the same wing at the same angle of attack as in 6(a) above, but for a free stream Mach no. of 0.77 ?
7. Derive the expression for maximum climb angle for a jet propelled airplane. Also find the rate of climb corresponding to maximum climb angle.
8. (a) What is energy height? Give the expression for the same and discuss its significance.
(b) Consider an airplane with an instantaneous acceleration of $2.4 \mathrm{~m} / \mathrm{s}^{2}$ at an instantaneous velocity of $240 \mathrm{~m} / \mathrm{s}$. At the existing flight conditions, S.E.P. is $90 \mathrm{~m} / \mathrm{s}$. Calculate instantaneous maximum rate of climb that can be obtained at these accelerated flight conditions.
9. Describe the various types of engine used in an aircraft. Explain Turbojet and Ramjet engine, in detail.

