B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination
December, 2013
BAS-008 : STRENGTH OF MATERIALS
Time : $\mathbf{3}$ Hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carries equal marks. Use of scientific calculator is permitted.

1. (a) Give stress - strain relationships for the three orthogonal normal stress system.
(b) A stepped bar as shown in figure is subjected to an axially applied compressive load of 35 kN . Find the maximum and minimum stresses produced.

2. (a) Derive an expression for stresses on inclined sections. When an element is in a state of simple shear.
(b) A steel rod of 3 cm diameter and 5 m long is connected to two grips and the rod is maintained at a temperature if $95^{\circ} \mathrm{C}$. Determine the stress and pull exerted when the temperature falls to $30^{\circ} \mathrm{C}$, if the ends do not yield. Take $\mathrm{E}=2 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$ and $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

$$
5+5=10
$$

3. Draw the shear force and bending moment diagrams for the overhanging beam as shown in figure. Locate the point of contraflexure.

4. Prove that the ratio of depth to width of the strongest beam that can be cut from a circular log of diameter ' d ' is 1.414 . Hence calculate the depth and width of the strongest beam that can be cut of a cylindrical log of wood whose diameter is 300 mm .
5. The stiffness of close-coiled helical spring is $1.5 \mathrm{~N} / \mathrm{mm}$ of compression under a maximum load of 60 N . The maximum shearing stress produced in the wire of the spring is $125 \mathrm{~N} / \mathrm{mm}^{2}$. The solid length of the spring (when the coils are touching) is given as 5 cm . $5+5=10$
Find (i) diameter of wire
(ii) no.of coils required.
6. (a) What do you understand by the term "Theories of failure". Briefly describe the important theories of failure.
(b) Explain with reasons which theory of failure is best suited for ductile materials and brittle materials.
7. (a) Derive the expressions for normal and shear stresses on an oblique plane.
(b) Explain how will you determine graphically the resultant stress on an oblique plane when a body is subjected to unequal and unlike direct stresses in two mutually perpendicular directions?
8. (a) Explain the term 'shear stress' and 'complimentary stress' with proper illustrations.
$5+5=10$
(b) Derive an expression for the relationship modulus of elasticity and modulus of rigidity.
9. Write short notes on any two of the following:
(a) Equivalent section and flitched beam. $5+5=10$
(b) Strain energy in torsion.
(c) Applications of Castigliano's theorem.
