No. of Printed Pages : 3
BNA-013

-	B.Sc. (NAUTICAL SCIENCE)
-	Term-End Examination
D	December, 2013

BNA-013 : ELECTRICITY AND ELECTRONICS

Time : $\mathbf{2}$ hours
Maximum Marks : 70

Note : (i) Non-programmable scientific calculator is allowed.
(ii) Attempt three questions from each section.
(iii) Questions No. 1 and 5 are compulsory.

SECTION-A
 (Electricity)

1. (a) Explain with neat sketch principle, 10 construction and working of 3 - phase Induction motor.
(b) A single-phase transformer has 525 primary turns and 70 secondary turns. If the primary is connected to a 3300 Volt supply, find the secondary voltage. Neglecting losses, what is the primary current when the secondary current is 250A ?
2. (a) Define the following terms: 5
(i) Electric current
(ii) E.M.F
(iii) Power factor
(iv) Power
(v) Energy
(b) Deduce the formulae when two coils are connected in series such that their fluxes are additive.
3. (a) Differentiate between core type and shell

5 type transformer.
(b) A moving coil voltmeter reading up to 20 milli volts has a resistance of 2 ohms. How this instrument be adopted to read voltage upto 300 Volts?
4. (a) Explain the effect of temperature on resistance of pure metals, alloys and insulators.
(b) Calculate the inductance of a toroid, 25 cm 5 mean diameter and $6.25 \mathrm{~cm}^{2}$ circular cross-section wound uniformaly with 1000 turns of wire. Calculate the e.m.f induced when current in it increases at the rate of $100 \mathrm{~A} /$ second.

SECTION-B
 (Electronics)

5. (a) Explain amplitude modulation (AM). $\mathbf{1 0}$ Derive the voltage equation of an AM wave.
(b) Discuss steps involved in demodulation of 5 an FM wave. Explain working of FM demodulation with the help of a circuit diagram.
6. (a) Describe transistor load line analysis. What 5 is its importance?
(b) In a common base connection, $\alpha=0.95$. The 5 voltage drop across $2 \mathrm{k} \Omega$ resistance which is connected in the collector is 2 V . Find the base current.
7. (a) Derive an expression for the voltage gain of a transistor amplifier from its a.c. equivalent circuit.
(b) An amplifier has an open circuit voltage 5 gain of 1000 , an input resistance of $2 \mathrm{k} \Omega$ and an output resistance of $1 \mathrm{k} \Omega$. Determine the input signal voltage required to produce an output signal current of 0.5 A in 4Ω resistor connected across the output terminals.
8. Write short notes on any two of the following :
(a) 7-segment display
$2 \times 5=10$
(b) LC tank circuit
(c) Frequency modulation
