BNA-011

B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

December, 2013

BNA-011 : APPLIED MATHEMATICS

Time : 2 hours

Maximum Marks : 70

Note : (i) Attempt any five questions. (ii) Use of scientific calculator is allowed.

1. (a) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rule 7

taking
$$h = \frac{1}{y}$$

(b) Find the area of the parallelogram 7 determined by the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$.

2. (a) An insurance company insured 2000 7 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter driver, car driver and a truck is 0.01, 0.03 and 0.15 respectively. One of the insured person meets with an accident. What is the probability that he is a scooter driver ?

(b) Obtain the line of regression of *y* on *x* for 7 the data given below :

x	1.53	1.78	2.60	2.95	3.42
y	33.50	36.30	40.00	45.80	53.50

7

3. (a) If
$$y = (\tan^{-1} x)^2$$
 show that
 $(x^2 + 1)^2 y_2 + 2x(x^2 + 1) y_1 = 0$

(b) If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
 for $-1 < x < 1$ prove 7
that $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$

4. (a) Find the area of the region included between 7 the parabola $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.

(b) Evaluate
$$\int \frac{1 - \tan x}{1 + \tan x} dx$$
 7

- 5. (a) In a spherical right angled triangle angle 7 B=90°, angle A=43°30' and side a=41°45'. Calculate side b and c.
 - (b) In a spherical triangle PQR angles P, Q and 7
 R are 58°30', 100°24' and 74°00' respectively.
 Calculate side p.

BNA-011

- 6. (a) Find the equation of the circle of radius 7
 5 whose centre lies on *x*-axis and passes through the point (2, 3).
 - (b) Find the co-ordinate of the vertices, the foci, the eccentricity and the equations of the directrices of the hyperbola $16y^2 - 4x^2 = 1$.

7