MCA (Revised)
Term-End Examination
December, 2013

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three from the rest. use of calculator is allowed.

1. (a) Verify the distributive property of floating $\mathbf{5 + 3}$ point numbers i.e. prove :
$\mathrm{a}(\mathrm{b}-\mathrm{c}) \neq \mathrm{ab}-\mathrm{ac} \mathrm{a}=.5555 \mathrm{E} 1, \mathrm{~b}=.4545 \mathrm{E} 1$, $\mathrm{c}=.4535 \mathrm{E} 1$
Define: Truncation error, Absolute Error and Relative Error.
(b) Find the real root of the equation $x=\mathrm{e}^{-x}$ using $\mathbf{4 + 4}$ Newton-Raphson Method. List the cases where Newton's Method fail.
(c) Solve by Gauss-Seidel Method 8
$2 x_{1}-x_{2}+x_{3}=-1$
$x_{1}+2 x_{2}-x_{3}=6$
$x_{1}-x_{2}+2 x_{3}=-3$
Correct to 3 decimal places.
(d) Let $\mathrm{f}(x)=\ln (1+x), x_{0}=1$ and $x_{1}=1.1$ use
linear interpolation to calculate an approximate value of $f(1.04)$ and obtain a bound on the truncation error.
(e) Conside initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y ; y(0)=1
$$

Find $y(0.2)$ using Runge-Kutta Method of fourth order. Also compare it with exact solution $y=-(1+x)+2 \mathrm{e}^{x}$ to find the error.
2. (a) Find the interval in which the smallest positive root of the following equation lies using Bisection Method $x^{3}-x-4=0$.
(b) Solve the following linear system of equations using Gauss Elimination method.
$x_{1}+x_{2}+x_{3}=3$
$4 x_{1}+3 x_{2}+4 x_{3}=8$
$9 x_{1}+3 x_{2}+4 x_{3}=7$
(c) Give properties of polynomial equations.
3. (a) The table below gives the values of $\tan x$ for $0.10 \leq x \leq 0.30$

X	0.10	0.15	0.20	0.25	0.30
$y=\tan x$	0.1003	0.1511	0.2027	0.2553	0.3093

Find (i) $\tan 0.12$ (ii) $\tan 0.26$
(b) Evaluate
$\mathrm{I}=\int_{0}^{1} \frac{1}{1+x} \mathrm{~d} x$, correct to three decimal
places. Using
(i) T rapezoidal and
(ii) Simpson's rule with $\mathrm{h}=0.5$ and $\mathrm{h}=.25$
(c) Determine the value of y when $x=0.1$ given that $y(0)=1$ and $y^{1}=x^{2}+y$
4. (a) A problem in statistics is given to the three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved.
(b) Calculate the correlation coefficiant for the following heights (in inches) of fathers (x) and their sons (y) :
$x: 65666767686970$
$y: 67686568727269$
(c) Three identical bags have the following proportion of balls .
First bag : 2 black 1 white
Second bag: 1 black 2 white
Third bag : 2 black 2 white
One of the bag is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again. The first one not been returned ?
5. (a) Evaluate $\int_{1}^{6}[2+\sin (2 \sqrt{x})] \mathrm{d} x$ using 10

Simpsons rule with 11 points.
(b) Estimate the sale of a particular quantity for 10 1966 using the following table

Year :	1931	1941	1951	1961	1971	1981
Sale in thousands :	12	15	20	27	39	52

