No. of Printed Pages : 3

MCSE-004

MCA (Revised)

Term-End Examination December, 2013 MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

Maximum Marks : 100

Note : Question number 1 is compulsory. Attempt any three from the rest. use of calculator is allowed.

1.	(a)	Verify the distributive property of floating point numbers i.e. prove : $a(b-c) \neq ab-ac \ a=.5555E1, \ b=.4545E1, \ c=.4535E1$ Define : Truncation error, Absolute Error and Relative Error.	5+3
	(b)	Find the real root of the equation $x=e^{-x}$ using Newton-Raphson Method. List the cases where Newton's Method fail.	4+4
	(c)	Solve by Gauss-Seidel Method $2x_1 - x_2 + x_3 = -1$ $x_1 + 2x_2 - x_3 = 6$ $x_1 - x_2 + 2x_3 = -3$ Correct to 3 decimal places.	8
	(d)	Let $f(x) = \ln(1+x)$, $x_0=1$ and $x_1=1.1$ use linear interpolation to calculate an approximate value of $f(1.04)$ and obtain a bound on the truncation error.	8

MCSE-004

(e) Conside initial value problem

$$\frac{dy}{dx} = x + y; \ y(0) = 1$$

Find y(0.2) using Runge-Kutta N

Find y(0.2) using Runge-Kutta Method of fourth order. Also compare it with exact solution $y=-(1+x)+2e^x$ to find the error.

- 2. (a) Find the interval in which the smallest 8 positive root of the following equation lies using Bisection Method $x^3 x 4 = 0$.
 - (b) Solve the following linear system of 8 equations using Gauss Elimination method. $x_1 + x_2 + x_3 = 3$ $4x_1 + 3x_2 + 4x_3 = 8$ $9x_1 + 3x_2 + 4x_3 = 7$

(c) Give properties of polynomial equations.

3. (a) The table below gives the values of $\tan x$ for $0.10 \le x \le 0.30$

Χ	0.10	0.15	0.20	0.25	0.30
y=tan x	0.1003	0.1511	0.2027	0.2553	0.3093
Find	(i) t	an0.12	(ii)	tan0.2	6

(b) Evaluate

I = $\int_{0}^{1} \frac{1}{1+x} dx$, correct to three decimal

places. Using

- (i) T rapezoidal and
- (ii) Simpson's rule with h = 0.5 and h = .25
- (c) Determine the value of y when x = 0.1 given 4 that y(0) = 1 and $y^1 = x^2 + y$

MCSE-004

2

8

4

8

- 4. (a) A problem in statistics is given to the three students A, B and C whose chances of solving it are ¹/₂, ³/₄ and ¹/₄ respectively. What is the probability that the problem will be solved.
 (b) Calculate the correlation coefficiant for the following heights (in induct) of (others (a))
 - (b) Calculate the correlation coefficiant for the following heights (in inches) of fathers (x) and their sons (y) : $x : 65 \ 66 \ 67 \ 67 \ 68 \ 69 \ 70$ $y : 67 \ 68 \ 65 \ 68 \ 72 \ 72 \ 69$
 - (c) Three identical bags have the following 6 proportion of balls .
 First bag : 2 black 1 white
 Second bag: 1 black 2 white
 Third bag : 2 black 2 white
 One of the bag is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again.
 The first one not been returned ?

5. (a) Evaluate
$$\int_{1}^{6} [2 + \sin(2\sqrt{x})] dx$$
 using 10

Simpsons rule with 11 points.

(b) Estimate the sale of a particular quantity for **10** 1966 using the following table

Year :	1931	1941	1951	1961	1971	1981
Sale in	12	15	20	27	39	52
thousands :	12	10	20			02

3