MCA (Revised)

Term-End Examination
December, 2013

MCS-053 : COMPUTER GRAPHICS AND MULTIMEDIA

Time : $\mathbf{3}$ hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Differentiate between raster scan and 5 random scan display devices.
(b) What is homogeneous co-ordinate system? Why is it needed? Explain this with the help of an example.
(c) What are the various parametric 5 countinuity conditions in curve drawing ?
(d) Explain Z buffer algorithm for hidden 6 surface removal. State its advantages.
(e) Explain the following terms: 6
(i) Resolution (Screen)
(ii) Aspect Ratio
(iii) Refresh rate
(f) Differentiate between vector graphics and 3
bitmap graphics.
(g) Explain Phony Specular Reflection model.
(h) Explain Bresenham's algorithm for drawing a line whose slope is $|\mathrm{m}| \leq \mid$.
2. (a) Draw a line from $(5,6)$ to $(15,12)$ on a raster screen using DDA algorithm.
(b) Using cohen sutherland line clipping 6 algorithm clip the following line against a window which has lower left corner at $(2,2)$ and upper right corner at $(5,5)$
Line 1:A(3, 1) B $(2,4)$
Line 2: $C(6,4) \quad D(13,8)$
(c) Differentiate between window and view
port : Find the normalized transformation N which uses the rectangle $\mathrm{A}(1,4) \mathrm{B}(4,1)$ $C(8,5) D(5,8)$ as a window and the normalized device screen as a view port whose lower left corner $L(0,0)$ and upper right corner $\mathrm{R}(1,1)$.
3. (a) Find the transformation matrix for the reflection about the line $y=-x$
(b) Given a Square ABCD whose co-ordinates are $\mathrm{A}(0,0), \mathrm{B}(3,0), \mathrm{C}(3,3), \mathrm{D}(0,3)$ find the final transformation matrix after translating 2 units in both x and y direction, followed by scaling of 1.5 units in the x-direction.
(c) Differentiate between parallel and perspective projection. Derive the general transformation for parallel projection on to a given view plane, where the direction of projection :
$d=a i+b j+c k$ is along the normal $\mathrm{N}=\mathrm{n}_{1} \mathrm{i}+\mathrm{n}_{2} \mathrm{j}+\mathrm{n}_{3} \mathrm{k}$ with the reference point $\mathrm{R}_{0}\left(x_{0}, y_{0}, z_{0}\right)$
4. (a) Derive a mathematical expression for drawing a cubic Bezier curve.
Given four control points $\mathrm{P}_{0}(1,1), \mathrm{P}_{1}(2,3)$, $P_{2}(4,3)$ and $P_{3}(3,1)$. Determine 2 more points on the same Bezier curve
(b) Find the 2D - transformation matrix of reflection of the $\triangle A B C$, where $A(0,0)$, $B(4,0)$ and $C(3,3)$ about the line passing through the points $(1,3)$ an $(-1,-1)$
(c) Categories the various types of parallel and 4
perspective projection
5. (a) Explain different types of animation ?

(b) What is compression? Explain the need for
5
video compression.
(c) Explain various video file formats. 5
(d) Explain any two types of authoring tools.

