No. of Printed Pages : 3

06285

MCS-033

MCA (Revised)

Term-End Examination December, 2013

MCS-033 : ADVANCED DISCRETE MATHEMATICS

 Time : 2 hours
 Maximum Marks : 50

Note : Question **no. 1** is **compulsory**. Attempt **any three** questions from the rest.

1.	(a)	Define :				4
		(i)	Graph	(ii)	Simple Graph	
		(iii)	null graph	1 (iv)	connected Graph	
	(b)	Find the order and degree of the following recurrence relations. Determine whether they are homogeneous or non homogeneous .				
x	(c)	(i) $a_n = 2a_{n-1} + 3.2^n$ (ii) $a_n = 8a_{n,2} - 16a_{n,4}$ Solve the following recurrence relation :				3
	(0)	$a_n - 5a_{n-1} + 6a_{n-2} = 0$ where $a_0 = 2$, $a_1 = 5$.				-
	(d)	Define $\delta(G)$ and $\Delta(G)$ for a graph G				2
	(e) (f)	Define walk, path and circuits in a graph. What is the generating function for the sequence 1, 1, 1, 1, 1, 1, 1 ?				3 2

1

- 2. (a) Solve the recurrence relation, $a_n = 6 a_{n-1} = 5$ $-11a_{n-2} + 6a_{n-3}$ with the initial conditions $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$.
 - (b) Define Bipartite graph. Show that every two 5 chromatic graph is Bipartite.
- 3. (a) Show that the graph given below is not 3 Eulerian.

- (b) Solve $a_{n+1} a_n = n$ with $a_0 = 1$ using method 5 of generating functions.
- (c) Find the chromatic number of the given 2 graph.

4.

(a) Show that k_{3,3} is non planar.
(b) Are the following graphs isomorphic ? If 4 Yes or No justify.

(c) Solve $a_n-2a_{n-1}=7n$,

- 5. (a) Solve the recurrence relation 5 $a_n - 3a_{n-1} + 2a_{n-2} = 2^n$ (b) A connected planar graph has six vertices 5
 - (b) A connected planar graph has six vertices 5
 each of degree 4. Determine the number of regions into which this planar graph can be split.