MCA (Revised)

Term-End Examination

December, 2013

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Define:

4
(i) Graph
(ii) Simple Graph
(iii) null graph (iv) connected Graph
(b) Find the order and degree of the following recurrence relations. Determine whether they are homogeneous or non homogeneous .
(i) $a_{n}=2 a_{n-1}+3.2^{n}$
(ii) $a_{n}=8 a_{n .2}-16 a_{n .4}$
(c) Solve the following recurrence relation :
$a_{n}-5 a_{n-1}+6 a_{n-2}=0$ where $a_{0}=2$, $a_{1}=5$.
(d) Define $\delta(G)$ and $\Delta(G)$ for a graph G 2
(e) Define walk, path and circuits in a graph. 3
(f) What is the generating function for the 2 sequence $1,1,1,1,1,1,1$?
2. (a) Solve the recurrence relation, $a_{n}=6 a_{n-1}$
$-11 a_{n-2}+6 a_{n-3}$ with the initial conditions $a_{0}=2, a_{1}=5$ and $a_{2}=15$.
(b) Define Bipartite graph. Show that every two chromatic graph is Bipartite.
3. (a) Show that the graph given below is not

3 Eulerian.

(b) Solve $a_{n+1}-a_{n}=n$ with $a_{0}=1$ using method 5 of generating functions.
(c) Find the chromatic number of the given graph.

4. (a) Show that $\mathrm{k}_{3,3}$ is non planar. 3
(b) Are the following graphs isomorphic? If Yes or No justify.

(c) Solve $a_{n}-2 a_{n-1}=7 n$,
5. (a) Solve the recurrence relation 5

$$
a_{n}-3 a_{n-1}+2 a_{n-2}=2^{n}
$$

(b) A connected planar graph has six vertices 5 each of degree 4 . Determine the number of regions into which this planar graph can be split.

