BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED)
 Term-End Examination
 December, 2013

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours
Maximum Marks : 75
Note: Question no. 1 is compulsory. Attempt any three from the rest.

1. (a) Write regular expression for the languages
(i) The set of strings over alphabet $\{0,1\}$ starting with 0 .
(ii) The set of strings recognised by $(a+b)^{3}$ over $\sum=\{a, b\}$
(b) Construct a Deterministic Finite Automata (DFA) for the regular expression $a a^{*} . b b^{*}$.
(c) Show that if L_{1} and L_{2} are context free 5 languages, then $L_{1} L_{2}$ is also context free.
(d) Construct a Push-Down Automata (PDA) accepted by empty stack, for the language $L=\left\{a^{m} b^{m} c^{n}: m, n \geq 1\right\}$
(e) Explain Turing-Machine (TM) with the 5 help of block diagram.
(f) What is halting problem for TM ? Explain 5 with example.
2. (a) Convert the following NFA to a DFA and informally describe the language accepted by DFA.

	0	1
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{t}\}$
r	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{t}\}$
s^{*}	ϕ	ϕ
t^{*}	ϕ	ϕ

Note : * on state indicates final state.
(b) Give Context-Free Grammar (CFG) for the following language $L=\left\{a^{m} b^{n} \mid n>m\right\}$.
(c) Test whether the following grammar is ambiguous $\mathrm{S} \rightarrow \mathrm{OS} 1 \mathrm{~S} \mid$ ISOS $\mid \epsilon$
3. (a) Find the Chomsky Normal Form (CNF) 5 equivalent to the following CFG .

$$
\left(\begin{array}{l}
\mathrm{S} \rightarrow \mathrm{aAbB} \\
\mathrm{~A} \rightarrow \mathrm{aA} \\
\mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{b}
\end{array}\right)
$$

(b) Prove that the language $L=\left\{a^{p}: p\right.$ is a prime is not context free language.
(c) Construct a Push-Down-Automata (PDA)
for the grammar $\left(\begin{array}{l}\mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA} \\ \mathrm{A} \rightarrow \mathrm{a}|a S| b \mathrm{AA} \\ \mathrm{B} \rightarrow \mathrm{b}|\mathrm{bS}| \mathrm{aBB}\end{array}\right)$
4. (a) Design a TM to compute proper substraction of two unary numbers. The proper substraction function f is defined as follows :
$f(m, n)=\left\{\begin{array}{cc}m-n & \text { if } m>n \\ 0 & \text { otherwise }\end{array}\right.$
(b) Show that for two recursive languages L_{1} and L_{2}, each of the following is recursive :
(i) $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
(ii) $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
5. (a) Explain the following with the help of an example each :
(i) Partial Function
(ii) Total Function
(iii) Constant Function
(b) Show that the blank-tape halting problem is undecidable.
(c) Explain the following : 5
(i) NP-Complete problem
(ii) NP-Hard problem

