CS-73

07004	BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED) Term-End Examination December, 2013 CS-73 : THEORY OF COMPUTER SCIENCE Time : 3 hours Maximum Marks : 75				
<i>Note</i> : <i>Question no.</i> 1 <i>is compulsory. Attempt any three from the rest.</i>					
1.	(a)	 Write regular expression for the languages (i) The set of strings over alphabet {0, 1} starting with 0. (ii) The set of strings recognised by (a + b)³ over Σ = {a, b} 	4		
	(b)	Construct a Deterministic Finite Automata (DFA) for the regular expression aa [*] .bb [*] .	6		
	(c)	Show that if L_1 and L_2 are context free languages, then L_1L_2 is also context free.	5		
	(d)	Construct a Push-Down Automata (PDA) 5 accepted by empty stack, for the language $L = \{a^m b^m c^n : m, n \ge 1\}$			
	(e)	Explain Turing-Machine (TM) with the help of block diagram.	5		
	(f)	What is halting problem for TM? Explain with example.	5		

1

2. (a) Convert the following NFA to a DFA and 8 informally describe the language accepted by DFA.

	0	1
→ p	{p,q}	{p}
q	{ r, s}	{t}
r	{p, r}	{t}
s*	φ	φ
t*	φ	φ

Note : * on state indicates final state.

- (b) Give Context-Free Grammar (CFG) for the **3** following language $L = \{a^m b^n \mid n > m\}$.
- (c) Test whether the following grammar is 4 ambiguous $S \rightarrow OS1S|1SOS| \in$
- **3.** (a) Find the Chomsky Normal Form (CNF) **5** equivalent to the following CFG.

$$\begin{pmatrix} S \rightarrow aAbB \\ A \rightarrow aA \\ B \rightarrow bB \mid b \end{pmatrix}$$

- (b) Prove that the language L = {a^p : p is a 5 prime} is not context free language.
- (c) Construct a Push-Down-Automata (PDA) 5

for the grammar
$$\begin{cases} S \rightarrow aB | bA \\ A \rightarrow a | aS | bAA \\ B \rightarrow b | bS | aBB \end{cases}$$

(a) Design a TM to compute proper 8 substraction of two unary numbers. The proper substraction function *f* is defined as follows :

$$f(m, n) = \begin{cases} m - n & \text{if } m > n \\ 0 & \text{otherwise} \end{cases}$$

- (b) Show that for two recursive languages 7 L_1 and L_2 , each of the following is recursive :
 - $(i) \quad L_1 \cup L_2$
 - (ii) $L_1 \cap L_2$
- 5. (a) Explain the following with the help of an 6 example each :
 - (i) Partial Function
 - (ii) Total Function
 - (iii) Constant Function
 - (b) Show that the blank-tape halting problem **4** is undecidable.

5

- (c) Explain the following :
 - (i) NP-Complete problem
 - (ii) NP-Hard problem