CS-71

BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED) Term-End Examination December, 2013 CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Tim	e : 3 h	ours Maximum Marks : 75
Not	te: С q q	Question number 1 is compulsory . Attempt only three uestions from the rest. In total, you have to answer four uestions. Use of scientific calculator is allowed .
1.	(a)	If 0.667 is the approximate value of $\frac{2}{3}$, find 6x5=30
		the absolute, relative, and percentage errors.
	(b)	Using Bisection method, find a real root of
		the equation correct to three decimal places.
		$x^3 - 5x + 1 = 0$
	(c)	Solve the equation
		$x^3 + 6x + 20 = 0,$
		one root being $1 + 3i$.
	(d)	Find the root of the equation
		$x e^x = \cos x$
		Using the Regula-falsi method correct to
		four decimal places.
	(e)	Solve $3x + \sin x - e^x = 0$
	. /	correct to 4 decimal places using
		Newton-Raphson method.

CS-71

- (f) Solve the set of simultaneous equations by Cramer's Rule $x_1 + 2x_2 - 3x_3 = -4$ $2x_1 - 3x_2 + x_3 = -1$ $3x_1 - 5x_2 + 4x_3 = 5$
- 2. (a) Using Newton -Raphson method, compute the root of the following equation correct to four decimal places. 3x5=15 $x e^{x}=1$
 - (b) Solve the equation
 x = 0.21 sin (0.5 + x)
 by iteration method with the approximate root as 0.1.
 - (c) Solve the following equations by Gauss-elimination method : x + y + z = 63x + 3y + 4z = 202x + y + 3z = 13.
- 3. (a) Find a root of the equation by using Bisection method correct to three decimal places. 3x5=15 $x + \log x = 5$. Take initial interval [3.2,4]
 - (b) Use Jacobi's iteration method to solve the following systems of equations : $13x_1 + 5x_2 - 3x_3 = 14$ $2x_1 + 12x_2 + x_3 = 29$ $3x_1 - 4x_2 + 10x_3 = 25$

CS-71

(c) Using Newton's interpolation formula, compute f(0.5) for the following data.

x:	0	1	2	3	4
f:	1.000	2.718	7.389	20.086	54.598

4. (a) By using the Regula - falsi method, find the root, correct to three decimal places of the equation 3x5=15 $x \log_{10}x = 1.2$

that lies between 2 and 3.

(b) Solve the following equations by Gauss-Seidal method.

20x + y - 2z = 173x + 20y - z = -18

.

2x - 3y + 20z = 25

(c) Use Lagrange's interpolation formula to compute *f* (27) from the following data :

<i>x</i> :	14	17	31	35
f(x):	68.7	64.0	44.0	39.1

5. (a) By the Secant method, find the root, correct to four decimal places, of the equation $x^3 - 2x - 1 = 0$ 3x5=15

that lies between 1 and 2.

(b) Evaluate $\int_0^1 e^x dx$ approximately in steps of 0.2 using Trapezoidal rule.

(c) Use Runge - Kutta method to approximate y, when x = 0.1 given that x = 0, when y = 1,

and
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y^2$$
.