BACHELOR OF COMPUTER APPLICATIONS

 (PRE-REVISED)Term-End Examination

December, 2013

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note : Question number 1 is compulsory. Attempt only three questions from the rest. In total, you have to answer four questions. Use of scientific calculator is allowed.

1. (a) If 0.667 is the approximate value of $\frac{2}{3}$, find $6 \times 5=30$ the absolute, relative, and percentage errors.
(b) Using Bisection method, find a real root of the equation correct to three decimal places. $x^{3}-5 x+1=0$
(c) Solve the equation
$x^{3}+6 x+20=0$, one root being $1+3 i$.
(d) Find the root of the equation $x e^{x}=\cos x$
Using the Regula-falsi method correct to four decimal places.
(e) Solve $3 x+\sin x-e^{x}=0$ correct to 4 decimal places using Newton-Raphson method.
(f) Solve the set of simultaneous equations by Cramer's Rule
$x_{1}+2 x_{2}-3 x_{3}=-4$
$2 x_{1}-3 x_{2}+x_{3}=-1$
$3 x_{1}-5 x_{2}+4 x_{3}=5$
2. (a) Using Newton-Raphson method, compute the root of the following equation correct to four decimal places.
$x e^{x}=1$
(b) Solve the equation
$x=0.21 \sin (0.5+x)$
by iteration method with the approximate root as 0.1.
(c) Solve the following equations by

Gauss-elimination method :
$x+y+z=6$
$3 x+3 y+4 z=20$
$2 x+y+3 z=13$.
3. (a) Find a root of the equation by using Bisection method correct to three decimal places.
$x+\log x=5$.
Take initial interval [3.2,4]
(b) Use Jacobi's iteration method to solve the following systems of equations :
$13 x_{1}+5 x_{2}-3 x_{3}=14$
$2 x_{1}+12 x_{2}+x_{3}=29$
$3 x_{1}-4 x_{2}+10 x_{3}=25$
(c) Using Newton's interpolation formula, compute $f(0.5)$ for the following data.

$x:$	0	1	2	3	4
$f:$	1.000	2.718	7.389	20.086	54.598

4. (a) By using the Regula - falsi method, find the root, correct to three decimal places of the equation
$x \log _{10} x=1.2$
that lies between 2 and 3 .
(b) Solve the following equations by GaussSeidal method.
$20 x+y-2 z=17$
$3 x+20 y-z=-18$
$2 x-3 y+20 z=25$
(c) Use Lagrange's interpolation formula to compute $f(27)$ from the following data :

$x:$	14	17	31	35
$f(x):$	68.7	64.0	44.0	39.1

5. (a) By the Secant method, find the root, correct to four decimal places, of the equation $x^{3}-2 x-1=0$
$3 \times 5=15$
that lies between 1 and 2 .
(b) Evaluate $\int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x$ approximately in steps of 0.2 using Trapezoidal rule.
(c) Use Runge - Kutta method to approximate y, when $x=0.1$ given that $x=0$, when $y=1$, and $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}$.
