BCS-054

DAC	HELOK IN COMPUTER APPLICATIONS	5				
BCS-0	Term-End Examination					
December, 2013						
BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES						
Time : 3	hours Maximum Marks : 2	Maximum Marks : 100				
Note :	(i) Simple (but not scientific) calculator is allowed dur examination.	ing				
	(ii) Question number 1 is compulsory. Attempt an three from the next four questions.	ıy				
1. (a)	Using 8- decimal digit floating-point representation (4 digits for mantissa, 2 digits for exponent and one each for sign of exponent and mantissa), represent the following numbers in normalized floating point form : (i) -47.65 (ii) 0.00658 (iii) -98674 (use chopping, if required)	3				
(b)		2				
(c)	Find the product of two numbers in (b) above	2				
(d)) What is overflow ? Give an example of multiplication due to which overflow occurs.	3				
(e)		2				

.

BCS-054

P.T.O.

(f) Solve the following system of linear 3 equations using Gauss elimination method :

$$2x + 5y = 9$$
$$4x + 3y = 11$$

- (g) Find an interval in which, the following **2** equation has a root $x^2-5x+6=0$
- (h) Write briefly the steps of bisection method 3 to find roots of an equation
- (i) Write the expressions which are obtained 3 by applying each of the following operators to *f*(*x*), for some :
 - (x) = (x), for some .
 - (i) Δ (ii) ∇ (iii) δ
- (j) Write ∇ and δ in terms of E
- (k) State the following two formulae for 3 interpolation

2

- (i) Newton's Backward difference formula
- (ii) Bessel's formula
- (l) Construct a difference table for the **2** following data :

X	1	3	5	7
f(x)	4	6	8	10

- (m) From the Newton's Backward formula **3** asked in part k(i) derive rule / formula for finding derivative of a function f(x) at x_0
- (n) State Simpson's rule for computing 3 $\int_{a}^{b} f(x) dx$
- (o) Define each of the concepts with suitable 4 examples
 - (i) Differential Equation
 - (ii) Initial value problem

BCS-054

- 2. (a) Briefly discuss how zero is represented as a floating point number for the 8-decimal digit representation mentioned in Q.No. 1(a).
 - For each of the following numbers find (b) 6 floating point representation, if possible normalized, using rounding, if required. The format is 8-decimal digit as is mentioned under Q.No. 1(a) :
 - 7854302 (ii) $2\frac{2}{3}$ (i)

Find absolute error, if any, in each case.

- Let $a = 476.9 \times 10^6$, $b = 657.2 \times 10^4$ and (c) 10 $c = -5.342 \times 10^4$ Find out whether '+'is associative for a, b and c? (i.e, you have to find out whether (a+b) + c = a + (b+c)ornot ?)
- Solve the following system of linear 3. (a) 12 equations, using partial pivoting : $2x_1 - 3x_2 + 5x_3 = 4$ $x_1 + 5x_2 - 4x_3 = 2$ $4x_1 + 3x_2 - 7x_3 = 0$
 - For solving a system of three linear (b) 4 equations, how the two iterative methods, viz. Gauss-Jacobi method and Gauss-Seidel method differ from each other.
 - (c) What are the relative advantages of direct methods over iterative methods for solving a system of linear equations ?

4. (a) For
$$f(x)=5x^2+7x+8$$
, find $\Delta^3 f(x)$.

8 (b) Estimate the missing term the in the following data using FD (Forword Difference) :

3

x	100	101	102	103	104
$\log(x)$	2.000	2.0043	?	2.0128	2.0170

BCS-054

P.T.O.

6

4

4

- (c) Use Linear Interpolation to find f(0, 4) for **6** $f(x) = 6^x$
- 5. Attempt **any two** of (a), (b) and (c) below :
 - (a) Find f'(x) at x = 0.1 from the following table **10** of values :

x	0.1	0.2	0.3	0.4	0.5
f(x)	1.1051	1.2214	1.3498	1.4918	2.56

- (b) Find approximate value of $\int_{1}^{2} \frac{dx}{1+x}$ using **10** trapezoidal rule using n = 1
- (c) Using Euler's method to find the solution of 10 y' = t + y, given y(0) = 1 find the solution on interval [0, 0.8] with h = 0.2. The independent variable is t.