BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2013

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : $\mathbf{3}$ hours

Maximum Marks : 100
Note: (i) Simple (but not scientific) calculator is allowed during examination.
(ii) Question number 1 is compulsory. Attempt any three from the next four questions.

1. (a) Using 8-decimal digit floating-point 3 representation (4 digits for mantissa, 2 digits for exponent and one each for sign of exponent and mantissa), represent the following numbers in normalized floating point form :
(i) -47.65
(ii) 0.00658
(iii) -98674
(use chopping, if required)
(b) Find the sum of two floating numbers 2 $x_{1}=0.3425 \times 10^{2}$ and $x_{2}=0.5307 \times 10^{3}$.
(c) Find the product of two numbers in (b) above 2
(d) What is overflow ? Give an example of 3 multiplication due to which overflow occurs.
(e) Write the following system of linear 2 equations in matrix form :

$$
\begin{aligned}
-3 x+5 y & =11 \\
9 x+14 y & =3
\end{aligned}
$$

(f) Solve the following system of linear equations using Gauss elimination method:

$$
\begin{aligned}
& 2 x+5 y=9 \\
& 4 x+3 y=11
\end{aligned}
$$

(g) Find an interval in which, the following2 equation has a root $x^{2}-5 x+6=0$
(h) Write briefly the steps of bisection method3 to find roots of an equation
(i) Write the expressions which are obtained 3 by applying each of the following operators to $f(x)$, for some :
(i) Δ
(ii) ∇
(iii) δ
(j) Write ∇ and δ in terms of E 2
(k) State the following two formulae for 3 interpolation
(i) Newton's Backward difference formula
(ii) Bessel's formula
(l) Construct a difference table for the 2 following data :

x	1	3	5	7
$f(x)$	4	6	8	10

(m) From the Newton's Backward formula asked in part k (i) derive rule / formula for finding derivative of a function $f(x)$ at x_{0}
(n) State Simpson's rule for computing 3 $\int_{a}^{b} f(x) \mathrm{d} x$
(o) Define each of the concepts with suitable 4 examples
(i) Differential Equation
(ii) Initial value problem
2. (a) Briefly discuss how zero is represented as a floating point number for the 8 -decimal digit representation mentioned in Q.No. 1(a).
(b) For each of the following numbers find floating point representation, if possible normalized, using rounding, if required. The format is 8 -decimal digit as is mentioned under Q.No. 1(a) :
(i) 7854302
(ii) $2 \frac{2}{3}$

Find absolute error, if any, in each case.
(c) Let $a=476.9 \times 10^{6}, b=657.2 \times 10^{4}$ and $c=-5.342 \times 10^{4}$ Find out whether ' + 'is associative for a, b and c ? (i.e, you have to find out whether $(a+b)+c=a+(b+c)$ or not?)
3. (a) Solve the following system of linear equations, using partial pivoting :
$2 x_{1}-3 x_{2}+5 x_{3}=4$
$x_{1}+5 x_{2}-4 x_{3}=2$
$4 x_{1}+3 x_{2}-7 x_{3}=0$
(b) For solving a system of three linear equations, how the two iterative methods, viz. Gauss-Jacobi method and Gauss-Seidel method differ from each other.
(c) What are the relative advantages of direct methods over iterative methods for solving a system of linear equations ?
4. (a) For $f(x)=5 x^{2}+7 x+8$, find $\Delta^{3} f(x)$.
(b) Estimate the missing term the in the following data using FD (Forword Difference) :

x	100	101	102	103	104
$\log (x)$	2.000	2.0043	$?$	2.0128	2.0170

(c) Use Linear Interpolation to find $f(0,4)$ for $f(x)=6^{x}$
5. Attempt any two of (a), (b) and (c) below :
(a) Find $f^{\prime}(x)$ at $x=0.1$ from the following table $\mathbf{1 0}$ of values :

x	0.1	0.2	0.3	0.4	0.5
$f(x)$	1.1051	1.2214	1.3498	1.4918	2.56

(b) Find approximate value of $\int_{1}^{2} \frac{d x}{1+x}$ using 10 trapezoidal rule using $\mathrm{n}=1$
(c) Using Euler's method to find the solution of 10 $y^{\prime}=t+y$, given $y(0)=1$ find the solution on interval [0, 0.8] with $\mathrm{h}=0.2$. The independent variable is t .

